
Last updated: 17/03/2020, from CD-ROM V2.53VM
Rev. 12/052022

www.addi-data.com

POSITIONING AND CONTOURING
CONTROL SYSTEM
APCI-8001 and APCI-8008

Scanner Interface

SCANNER INTERFACE 3

1 Introduction .. 4

2 Using the scanner functions ... 4

2.1 Boards already implemented ... 4
2.2 Initialising the scanner .. 4
2.3 Functions of the scanner module ... 5
2.4 Scan control ... 6
2.5 Scan trigger output ... 6
2.6 Definition of the scan records ... 7

2.6.1 PCAP programming .. 7
2.6.2 SAP programming ... 7

2.7 Using the scanner functions ... 8
2.8 PCAP functions for scanner accesses ... 8

2.8.1 rdScannerBuffer, read scanner buffer ... 8
2.8.2 rdScannerBufferSize, read scanner buffer size .. 9
2.8.3 rdScannerLsm, read scanner left spool memory .. 9
2.8.4 SendReqScannerBuffer, Send Request scanner buffer ... 9

2.8.4.1 Explanation of the return information for negative values 10
2.8.4.2 Description and information on handling the command 11

2.8.5 rdScannerStatus, read scanner status .. 11

3 Windows service rwPhysMemService ... 12

3.1 Installation of the Windows service rwPhysMemService ... 12
3.2 Uninstallation of the Windows service rwPhysMemService .. 12

4 Scanner-Interface

1 Introduction
The scanner functionality of the APCI-8001 / APCI-8008 can be used to scan and temporarily store process
data in real-time. In doing this, the process data is stored cyclically in a scan record. These records can be
read out and processed as record arrays. The resource interface is necessary to use this functionality. It is
described in the manual ”Resource Interface”.
This option can be used only if there is operating system version RwMos.ELF with the options
optionSCANNER and optionRESOURCE.

2 Using the scanner functions

2.1 Boards already implemented
APCI-3120: 16 analog inputs, 8 analog outputs
APCI-3701: 16 inductive transducers
APCI-3003: 4 analog inputs, simultaneous acquisition
APCI-3501: 8 analog outputs

2.2 Initialising the scanner

The following values for the universal object interface must be used when using the scanner module:

Table 1: Object descriptor elements

Object descriptor
element

Value

Handle Must be initialised with 0 when starting the application or
after rebooting the control system, and is then
managed/used by the system.
For PCAP programming: After the scanner functionality
is cleaned, the handles for all elements must be reset to
zero using the rdwr functionality.

BusNumber 1100
DeviceNumber 0
Index 0, 1, ...

Function number for configuring/operating the scanner,
according to table 2.

SubIndex No function

When the DeviceNumber > 0 and the index is 1, the scan objects are declared. The DeviceNumber must be
assigned consecutively.
The parameters to be written are returned as second parameters (value) by calling the function wrOptionInt
or assigned directly at SAP programming.
For more information on the object descriptor elements, see the manual "Universal Object Interface".

SCANNER INTERFACE 5

2.3 Functions of the scanner module

Table 2: Functions of the scanner module for device No. 0

No.
(index

)

Name Type Explanation Return parameter
(value)

1 CLEAN integer w Reset scanner
The value 1 must be returned.
For PCAP programming: Immediately
after the reset, the handles for all objects
used must be reset to zero using the
rdwr functionality.

1

2 INIT integer w Initialise scanner before start-up.
This means, for example, that the
SizeOfRecord is calculated and the data
buffer is emptied.
Caution: By this calling also the variable
HW_SCAN_STROBE is reset.

1

3 STARTSTOP integer r/w Start or stop scanner, or request status. 1 = Start
0 = Stop

4 STATUS integer r Read the status of the scanner
The return value of this function is
described for the rdScannerStatus
function.

5 SIZEBUFFER integer r Request size of the total memory in the
scan buffer (in bytes).
Default: 100,000 bytes
This value can be set using the
SZSCANBUFFER environment variable
in fwsetup.

6 TIMEFACTOR integer r/w Read/write time factor in scanning time
for scanning data
Default value: 1

1, 2, ...

7 RECORDSTO
SCAN

integer w Read/write number of records that
should be scanned.
If 0 is entered here, scanning will be
endless. If more records are to be
scanned than fit into the data buffer, the
scanned data must be read out during
the scan process.
Default value: 1

0,1, ...

8 RECORDS
SCANNED

integer r Request number of scanned records.
By calling the function ScannerInit the
value is reset to 0.

9 SIZEOF
RECORD

integer r Request size of the record to be
scanned (in bytes). This value is only
available after calling the INIT function.

10 CHECK
BUFFER

integer r Request size of the free memory in the
scan buffer (in bytes).

6 Scanner-Interface

No.
(index

)

Name Type Explanation Return parameter
(value)

11 HW_SCAN_
STROBE

integer r/w By setting of one or several bits in this
register, fast hardware inputs can be
defined as strobe inputs for the latch
process.
RWMOS.ELF must have the respecting
options that this option can be used.
Caution: This variable is reset by calling
INIT.

bits 0..7

22 FREE
BUFFER

integer w Internal function for the memory
administration, it is not considered for
the user.

Memory to be
released in bytes

64 SYNCPULSE
OUT

integer r/w Only available with special hardware
version: This register allows for a
scanner-synchronous pulse output to
trigger external components
(see Chapter 2.5)

bit-coded axis
specification for
pulse output

2.4 Scan control

By default, the scan is realised in a time-controlled and sampling-synchronous manner. However, it is also
possible to realise the scan in an event-controlled way. For this, as the last scan element, the resource
WTLSTRB (#101) is defined for a defined axis. In this case, the scan is recorded when a latch-strobe-signal
of the respecting axis has been recognised. Also here, the scan is realised sampling-synchronously. The
parameter TIMEFACTOR should always be set to 1.
The latch pulses must not be faster than the sampling times. The latch-strobe-signal is always reset during
the recording of the scan record.

2.5 Scan trigger output

In a special hardware version and with RWMOS from V2.5.3.78, it is possible to output a hardware trigger
signal synchronously to the scan. This signal can be used, for example, to synchronise external components
during data acquisition. Depending on the hardware version, this signal may be an RS422 output or a digital
24 V output.
For this, the scanner variable SYNCPULSEOUT (#64) has to be written on by a bit-coded value in which the
axes for the pulse output are flagged by set bits.

Example: 3rd axis = pulse output, the value 4 has to be written in the variable SYNCPULSEOUT

Normally, only one output will be prepared for such a purpose. In the corresponding axis, there is no zero-
trace signal and no hardware latch available. When using a 24 V digital output, this can be connected in the
usual way as well. The level actually output is the result of the disjunction (OR) of the indicated state
information.
Through appropriate hardware preparation, it is also possible to have a fast pulse output from the software
environment via the resource #64 (see manual “Resource Interface”), e.g. by writing on the resource #64, an
RS422 output or, through appropriate hardware preparation, a digital output can be used at once.

Note: The output of the digital outputs is updated only once per sampling interval of the controller (usually
1.28 ms). A fast pulse output allows for a multiple output during the sampling interval.

SCANNER INTERFACE 7

2.6 Definition of the scan records

2.6.1 PCAP programming

The data to be scanned is defined by function calls with the following data. The elements to be scanned
must first be defined via the G3 Resource Interface. The scan record is constructed in the reverse order to
that in which the individual elements are defined. All the elements of the G3 resource interface can be
scanned.

Table 3: Definition of the scan record

Object descriptor
element

Value

BusNumber 1100
AccessType Input/Output
DateType (no function)
DeviceNumber 1, 2,
Index 0, 1, ...

TIMEFACTOR for this element
SubIndex Valid handle for an object descriptor from the G3

Resource Interface

Note:
The DeviceNumber must not be equal to 0 and must be assigned uniquely.
The initialisation of the objects that shall be recorded, is realised with the access method
ATAccessInputOutput (= 3).
The contents of the parameter DataType at the object descriptors of the data to be recorded is of no
importance.
The variable TIMEFACTOR, which is entered into the index, allows scanning the data record only to whole
numbered multiples of the recording intervals. With the value 1 the measurement value is recorded in each
recording interval. With the value 0, the measurement value is never recorded. As standard, here the value 1
must be entered.

2.6.2 SAP programming

An AT specifier is declared for each piece of data to be scanned.

Example:

var ScanListItem_rp: double AT %MRScannerBus.1.1.0;
var ScanListItem_axst: integer AT %MDScannerBus.2.1.0;
var ScanListItem_digi: integer AT %MDScannerBus.3.1.0;

The resource to be scanned must then be assigned once to this variable (each time the SAP programme is
started) with the help of the ptr operator. This assignment must be specified in the reverse order to that in
which the data is stored in the scan record.

Example:

 ScanListItem_rp := ptr(G3R_rp_A1_r); // real position of axis 1
 ScanListItem_digi := ptr(G3R_digi_A1_r); // digital inputs
 ScanListItem_ain_CH0 := ptr(G3R_ain_CH0_r); // analogue value channel 0

Please ensure that the data types used match.

8 Scanner-Interface

2.7 Using the scanner functions

• Define the required ObjectDescriptor elements
• Define resources to be scanned,

execute at least one read operation, so that there is a valid handle.
• Call scanner CLEAN
• Define a list of scan objects
• Program the number of records to be recorded using the variable RECORDSTOSCAN
• Call scanner INIT
• The scan can now be started and stopped again using

scanner STARTSTOP
• The scanned data is read out using the PCAP command rdScannerBuffer (see below)

Here, the scanner status can be requested at any time, using rdScannerStatus, for example.

For PCAP programming:
If the ResourceClean function is called repeatedly, all handles of the resource object descriptor elements
must be reset.
If the ScannerClean function is called repeatedly, all handles of the scanner object descriptor elements must
be reset using the rdwr functionality.

2.8 PCAP functions for scanner accesses

2.8.1 rdScannerBuffer, read scanner buffer

DESCRIPTION: This function copies the current scanner buffer of the xPCI-800x into a memory
area of the calling application and releases the corresponding memory on the
control for the scan.

BORLAND DELPHI: function rdScannerBuffer (buffer: PChar; size: integer): integer;
C: int rdScannerBuffer (char *buffer, int size);
VISUAL BASIC: Function rdScannerBuffer (buffer As String, ByVal size As Long)
PARAMETER: The buffer parameter is a pointer to a memory area of the application, whose size

must be at least size bytes. The parameter size specifies the number of bytes to be
read.

RETURN VALUE: Number of bytes that have been successfully copied into the buffer memory area
0 – No data available in the scanner
-1 – ScannerBuffer is defined too large
-2 – System error in the scanner module

NOTE: The maximum number of bytes to be read out is computed in this function. Thus, a
maximum number of size bytes or fewer are read out. For the subsequent data
analysis, it is reasonable to always read out a multiple of the specified record
length.
The format of the data structure in which the data is written must correspond to the
selection of the scan objects. The returned data is not aligned with word limits.
To execute this command, specific rwmos.elf software is required.
With this command, the data transfer rates may be under 2 MB/s depending on the
hardware. With the newer command SendReqScannerBuffer() (see Chapter 2.8.4),
the transfer rates are significantly higher.

SCANNER INTERFACE 9

2.8.2 rdScannerBufferSize, read scanner buffer size

DESCRIPTION: This function returns the current size of the scanner buffer on the APCI-8001 /
APCI-8008. The return value is given in bytes. By default, the buffer size is set to
100,000 bytes. The buffer size can be increased to a maximum of 13 MB, using a
flash environment variable.

BORLAND DELPHI: function rdScannerBufferSize: integer;
C: int rdScannerBufferSize(void);
VISUAL BASIC: Function rdScannerBufferSize() As Long
RETURN VALUE: Buffer size of the scanner buffer, in bytes.
NOTE: Specific rwmos.elf software is required to execute this command.

2.8.3 rdScannerLsm, read scanner left spool memory

DESCRIPTION: This function returns the currently free available working memory of the scanner
buffer. During entry in the scanner, this value counts down to 0.
During the scanner read-out, the value returns to the ScannerBufferSize.

BORLAND DELPHI: function rdScannerLsm: integer;
C: int rdScannerLsm(void);
VISUAL BASIC: Function rdScannerLsm() As Long
RETURN VALUE: Free available working memory of the scanner buffer, in bytes.
NOTE: Specific rwmos.elf software is required to execute this command.

2.8.4 SendReqScannerBuffer, Send Request scanner buffer

DESCRIPTION: This function copies the current scanner buffer of the xPCI-800x into a memory
area of the calling application and releases the corresponding memory on the
control for the scan.

BORLAND DELPHI: function SendReqScannerBuffer (buffer: PChar; size: integer): integer;
C: int SendReqScannerBuffer (char *buffer, int size);
VISUAL BASIC: Function SendReqScannerBuffer (buffer As String, ByVal size As Long)
PARAMETER: The buffer parameter is a pointer to a memory area of the application, whose size

must be at least size bytes. The parameter size specifies the number of bytes to be
read.

RETURN VALUE: Number of bytes that have been successfully copied into the buffer memory area
0 – No data available in the scanner and no error available
Negative values indicate errors or status information. The bit coding is described in
Chapter 2.8.4.1.

NOTE: In contrast to the function rdScannerBuffer, the data is not read by the PCI board,
but is written by the control into the PC’s RAM. So with this command, the data
transfer rate is significantly higher.
The maximum number of bytes to be read out is computed in this function, too.
Thus, a maximum number of size bytes or fewer are read out. For the subsequent
data analysis, it is reasonable to always read out a multiple of the specified record
length.
The format of the data structure in which the data is written must correspond to the
selection of the scan objects. The returned data is not aligned with word limits.
To execute this command, specific rwmos.elf software is required.
This command is only available from rwmos.elf V2.5.3.126 and with mcug3.dll
V2.5.3.107.

9 Scanner-Interface

2.8.4.1 Explanation of the return information for negative values

If the return value has a negative sign (bit 31 is set), this value does not stand for transferred bytes but
indicates bit-coded status information and, if applicable, error information. If one of the lower 16 bits (0-15) is
set, the value indicates error information and a data transfer is not possible with this command. Bits 16-30
indicate only status information, but it is still possible to use this command. However, an explicit analysis of
these bits may make sense in order to evaluate the reliability of the system. The error and status information
can be read out safely if SendReqScannerBuffer is called with size = 0. If size > 0 is indicated and only
status information but also data is available in the scanner, a number of bytes is transferred and indicated in
the return value. In this case, the status information is not available.

Table: Bit coding of the return value of the DLL command SendReqScannerBuffer

Bit Value [hex] Description
 0 0000 0001 Access to the resource interface has failed. In this case, the monitor screen of

fwsetup.exe outputs additional information.
1-7 0000 00FE Currently not assigned

8 0000 0100 The attempt to get physical memory has failed!
KS_allocPhysMem returned the error KSERROR_NOT_ENOUGH_MEMORY

 9 0000 0200 The attempt to get physical memory has failed!
KS_allocPhysMem returned the error KSERROR_CANNOT_ALLOC_PHYSMEM

10 0000 0400 The attempt to get physical memory has failed!
KS_allocPhysMem returned the error KSERROR_CANNOT_MAP_PHYSMEM

11 0000 0800 Currently not assigned
12 0000 1000 The attempt to get physical memory has failed!

KS_allocPhysMem has returned an unknown error.
13-16 0000 E000 Currently not assigned

16 0001 0000 Access to the service rwPhysMemService is not possible (ERR_OpenFileMapping
error). In this case, a conventional attempt is made to get physical memory from the
operating system.

17 0002 0000 Access to the service rwPhysMemService is not possible (ERR_ MapViewOfFile
error). In this case, a conventional attempt is made to get physical memory from the
operating system.

18 0004 0000 Currently not assigned
19 0008 0000 The stored data structures in mcug3.dll and rwPhysMemService do not match

(problem of versions). Access is not possible. In this case, a conventional attempt is
made to get physical memory from the operating system.

20 0010 0000 The memory area size of the physical memory is wrong (problem of versions).
In this case, a conventional attempt is made to get physical memory from the
operating system.

21 0020 0000 No physical memory available in the service (installation problem)
In this case, a conventional attempt is made to get physical memory from the
operating system.

22 0040 0000 The data identifiers in mcug3.dll and rwPhysMemService do not match (problem of
versions). Access is not possible. In this case, a conventional attempt is made to get
physical memory from the operating system.

23 0080 0000 The memory of the service rwPhysMemService is already used (marked).
In this case, a conventional attempt is made to get physical memory from the
operating system.

24-28 1F00 0000 Currently not assigned
29 2000 0000 allocPhysMem with KSF_ALTERNATIVE has failed (just for information). This bit has

no significant meaning for the user.
30 4000 0000 The user program has no administrator rights (these are required to mark the

assignment of memory space). If the memory is free, it is used anyway. However,
multiple calls may result in double assignment and thus in data loss.

31 8000 0000 Sign bit: This bit indicates that the meaning of this table is effective. If this bit is not set,
the numerical value indicates the number of transferred bytes.

SCANNER INTERFACE 11

2.8.4.2 Description and information on handling the command

Before the first retrieval of data, the command should be called with size = 0 in order to try to get physical
memory for the internal processing of the command. This memory will then be available for the entire runtime
of the program. If no memory is available, this command cannot be used. Therefore, it is absolutely
necessary to analyse the return value with the first call.
In the event that the used memory is provided by the operating system service rwPhysMemService, the
memory will be marked as “used” if the calling program has administrator rights. This prevents double use of
the same memory area. When the application is quit, this mark is automatically removed and the memory is
made available again for the next program call. If the service rwPhysMemService is unavailable or the
memory of this service is marked as “used”, the internal DLL command KS_allocPhysMem tries to get some
memory from the operating system.
If it is possible to simultaneously execute programs that use the command SendReqScannerBuffer, it should
be ensured that these programs are executed with administrator rights (with Windows Vista / 7 / 8 / 10 and
future versions). In case no error bit has been returned with the first call, the command may be used in this
session without restrictions and in the same way as rdScannerBuffer.

2.8.5 rdScannerStatus, read scanner status

DESCRIPTION: This function returns the current status of the scanner buffer on the APCI-8001 /
APCI-8008.

BORLAND DELPHI: Function rdScannerStatus: integer;
C: int rdScannerStatus(void);
VISUAL BASIC: Function rdScannerStatus() As Long
RETURN VALUE: Bit-coded scanner status.

Table: Bit-coded construction of the scanner status word
Bit No. Name Function
0 empty Status flag: scanner is completely empty
1 full Status flag: scanner is full. The specified number

of records has been entered.
2 inprocess Status flag: the scanner is currently processing

data.
3 endless Status flag: the ‘endless’ scan operating mode

has been selected.
8 norecords Error flag: no records have been defined. Error

during scan list generation.
9 overrun Error flag: scanner overrun. The scanner buffer is

full. For ‘endless’ scanning, the oldest, last
entered, record is rejected. If ‘endless’ scanning
has not been configured, the scan process is
stopped and no new records can be recorded
anymore

10 Config
error

Error flag: An error was detected at configuration.
- unknown data type

11 Scan
Ressource
Not
Valid

Error flag: A resource from the scan list is invalid.
Possibly, the content of the resource interface
was deleted.

NOTE: Specific rwmos.elf software is required to execute this command.

9 SCANNER-INTERFACE

3 Windows service rwPhysMemService

The Windows service rwPhysMemService should be installed to use the function SendReqScannerBuffer()
without restrictions. This function serves for transferring scanner data from the control to the PC user
program in an accelerated way. When the Windows operating system boots up, this service requests
physical memory and manages it during the entire runtime of the operating system. This ensures that the
quick data transfer can be used any time, i.e. also after several program calls or with high usage of the
Windows operating system. However, this memory cannot be used by different applications at the same
time.

3.1 Installation of the Windows service rwPhysMemService

To install this service, the file rwMemMgnt.exe needs to be copied into a local directory. In this directory, the
program must be called using the parameter /install:

rwMemMgnt /install

This can be made in a prompt box, for example. Here it should be noted that depending on the Windows
version, administrator rights must be available.
By this call, the service is installed but not started yet. The service is started by a reboot of the Windows
operating system or manually in services.msc.

3.2 Uninstallation of the Windows service rwPhysMemService

To uninstall this service, the file rwMemMgnt.exe (see Chapter 3.1) must be called using the parameter
/uninstall:

rwMemMgnt /uninstall

This can be made in a prompt box, for example. Here it should be noted that depending on the Windows
version, administrator rights must be available.
By this call, the Windows operating system receives an uninstallation prompt, i.e., after a reboot of the
operating system, the service is uninstalled and not started anymore.
The service can also be stopped manually in services.msc. However, without uninstallation, the service will
be restarted after a reboot of the Windows operating system.

	1 Introduction
	2 Using the scanner functions
	2.1 Boards already implemented
	2.2 Initialising the scanner
	2.3 Functions of the scanner module
	2.4 Scan control
	2.5 Scan trigger output
	2.6 Definition of the scan records
	2.6.1 PCAP programming
	2.6.2 SAP programming

	2.7 Using the scanner functions
	2.8 PCAP functions for scanner accesses
	2.8.1 rdScannerBuffer, read scanner buffer
	2.8.2 rdScannerBufferSize, read scanner buffer size
	2.8.3 rdScannerLsm, read scanner left spool memory
	2.8.4 SendReqScannerBuffer, Send Request scanner buffer
	2.8.2 rdScannerBufferSize, read scanner buffer size
	2.8.3 rdScannerLsm, read scanner left spool memory
	2.8.4 SendReqScannerBuffer, Send Request scanner buffer
	2.8.2 rdScannerBufferSize, read scanner buffer size
	2.8.3 rdScannerLsm, read scanner left spool memory
	2.8.4 SendReqScannerBuffer, Send Request scanner buffer
	2.8.2 rdScannerBufferSize, read scanner buffer size
	2.8.3 rdScannerLsm, read scanner left spool memory
	2.8.4 SendReqScannerBuffer, Send Request scanner buffer

