

Last updated: 31/03/2021, from disk V2.53VP
Rev. 15/052022

www.addi-data.com

POSITIONING AND CONTOURING
CONTROL SYSTEM

APCI-8001 AND APCI-8008

PROGRAMMING AND
REFERENCE MANUAL / PM (PART 1)

CONTENTS 3

1 Introduction .. 9

2 Internal details of the rw_MOS operating system software ... 10

2.1 The APCI-800x position controller ... 10
2.1.1 Control loop opened/closed .. 10
2.1.2 PIDF filter... 10

2.1.2.1 The filter parameters KD, KI, KP .. 10
2.1.2.2 Additional phase element ... 11
2.1.2.3 Scan time .. 11

2.2 The APCI-800x profile generator ... 11
2.2.1 Profile generation for JOG commands .. 11
2.2.2 Profile generation for MOVE commands ... 12
2.2.3 Acceleration ... 13
2.2.4 Maximum velocity .. 13
2.2.5 Target velocity ... 13
2.2.6 Velocity correction ... 13
2.2.7 Target position / Traverse distance ... 14
2.2.8 Operating modes for command processing .. 14

2.2.8.1 Direct mode .. 14
2.2.8.2 Spool mode .. 14
2.2.8.3 Additional notes on spooler operation .. 15

2.3 Interpolation with APCI-800x.. 15
2.3.1 Linear interpolation .. 15

2.3.1.1 Formal linear interpolation .. 15
2.3.2 Circular interpolation ... 16
2.3.3 Helical interpolation ... 16
2.3.4 Surface area processing ... 16
2.3.5 Synchronous and asynchronous interpolations .. 16

2.4 APCI-800x limit switch handling ... 17
2.4.1 TOM limit switch function (Turn-Off-Motor) ... 17
2.4.2 SMA limit switch function (Stop-Motor-Abruptly) ... 17
2.4.3 SMD limit switch function (Stop-Motor-Decelerate) .. 17

2.5 Other function groups ... 17
2.5.1 Application-specific system variables .. 17
2.5.2 Application-specific axis variables ... 18

3 APCI-800x Programming methods ... 19

3.1 PC application programming (PCAP programming, or direct programming) 19
3.2 Stand-alone application programming (SAP programming) .. 19

3.2.1 SAP-Multitasking ... 20

4 PC application programming .. 21

4.1 Introduction ... 21
4.2 Example programs for using the function libraries ... 21

4 CONTENTS

4.3 Definitions, structures and records... 22
4.3.1 Definitions .. 22
4.3.2 Structures, records and types ... 22

4.3.2.1 Structure/record type AS .. 22
4.3.2.2 Structure/record type TSRP ... 23
4.3.2.3 Structure/record type TRU (Trajectory Units) ... 24
4.3.2.4 Structure/record type LMP (Linear Motion Parameters) 24
4.3.2.5 Structure/record type CMP (Circular Motion Parameters) 24
4.3.2.6 Structure/record type HMP (Helical Motion Parameters) 25
4.3.2.7 Structure/record type HMP 3D (Helical Motion Parameters 3-Dimensional) . 25
4.3.2.8 Structure/record type ROSI (Risc Operating System Information) 26
4.3.2.9 Structure/record type CBCNT (Common Buffer CNC-Task) 26
4.3.2.10 Structure/record type CNCTS (Computerized Numerical Control Task

Status) .. 27
4.4 PCAP high-level language function reference list .. 27

4.4.1 Structure of the reference list .. 27
4.4.2 General information ... 28

4.4.2.1 Function values and function return values .. 28
4.4.3 azo, activate zero offsets... 28
4.4.4 BootErrorReport, initialisation error report .. 29
4.4.5 BootFile, boot operating system file .. 29
4.4.6 CardSelect ... 30
4.4.7 ClearCI99 .. 30
4.4.8 cl, close loop .. 30
4.4.9 clv, close loop velocity ... 31
4.4.10 contcnct, continue numeric controller task .. 31
4.4.11 ctru, change trajectory units .. 32
4.4.12 getEnvStr, get Environment String .. 33
4.4.13 gettskinfo, Get Task Informations ... 34
4.4.14 gettskstr, Get Task Message String .. 34
4.4.15 InitMcuErrorReport, initialisation error report .. 34
4.4.16 InitMcuSystem, initialise mcu system .. 35
4.4.17 InitMcuSystem2, initialise mcu system (2nd method) .. 35
4.4.18 InitMcuSystem3, initialise mcu system (3rd method) ... 36
4.4.19 ja, jog absolute .. 36
4.4.20 jhi, jog home index .. 37
4.4.21 jhl, jog home left .. 37
4.4.22 jhr, jog home right .. 38
4.4.23 jr, jog relative ... 38
4.4.24 js, jog stop ... 38
4.4.25 lpr – Latch Position Registers ... 38
4.4.26 lprs – Latch Position Registers Synchronous.. 39
4.4.27 lps, latch position synchronous ... 39
4.4.28 mca, move circular absolute - smca, spool motion circular absolute 40
4.4.29 mcr, move circular relative - smcr, spool motion circular relative 40
4.4.30 mca3d, move circular absolute three dimensional - smca3d, spool motion circular

absolute three dimensional ... 41
4.4.31 mcr3d, move circular relative three dimensional - smcr3d, spool motion circular relative

three dimensional .. 41
4.4.32 mcuinit, motion control unit initialisation .. 42
4.4.33 MCUG3_SetBoardIntRoutine .. 42
4.4.34 MCUG3_ResetBoardIntRoutine .. 42
4.4.35 mha, move helical absolute - smha, spool motion helical absolute 43
4.4.36 mhr, move helical relative - smhr, spool motion helical relative 43
4.4.37 mla, move linear absolute - smla, spool motion linear absolute 44
4.4.38 mlr, move linear relative - smlr, spool motion linear relative ... 44
4.4.39 ms, motion stop ... 44

CONTENTS 5

4.4.40 MsgToScreen, message to screen ... 45
4.4.41 ol, open loop .. 45
4.4.42 ra, reset axis .. 45
4.4.43 rdap, read axis parameters ... 46
4.4.44 rdaux, read auxiliary register ... 46
4.4.45 rdaxst, read axis status ... 46
4.4.46 rdaxstb, read axis status bit... 48
4.4.47 rdcbcnct, read common buffer CNC-Task ... 49
4.4.48 rdcd, read common double.. 49
4.4.49 rdci, read common integer... 50
4.4.50 rdcncts, read computerized numeric controller task status ... 50
4.4.51 rdControllerFlags, read Controller Flag register .. 50
4.4.52 rddigi, read digital inputs ... 51

4.4.52.1 Axis-qualifier digi .. 51
4.4.53 rddigib, read digital input bit .. 52
4.4.54 rddigo, read digital outputs .. 53
4.4.55 rddigob, read digital output bit ... 53
4.4.56 rddp, read desired position .. 54
4.4.57 rddpoffset, read desired position offset ... 54
4.4.58 rddpd – read desired position in display unit ... 54
4.4.59 rddv, read desired velocity .. 55
4.4.60 rddvoffset, read desired velocity offset .. 55
4.4.61 rdEffRadius – Read Effective Radius .. 55
4.4.62 rdepc, read EEPROM programming cycle .. 56
4.4.63 rdErrorReg, read Error Register .. 56

4.4.63.1 Register ErrorReg .. 56
4.4.64 rdf, read filter ... 57
4.4.65 rdGCR, read gear configuration register ... 58
4.4.66 rdgf, read gear factor ... 58
4.4.67 rdgfaux, read gear factor auxiliary channel ... 58
4.4.68 rdhac, read home acceleration .. 59
4.4.69 rdhvl, read home velocity .. 59
4.4.70 rdifs, read interface status ... 59

4.4.70.1 Axis qualifier ifs... 60
4.4.71 rdifsb, read interface status bit .. 60
4.4.72 rdigi, reset digital inputs... 61
4.4.73 rdipw, read in position window .. 61
4.4.74 rdirqpc, read interrupt request PC ... 61
4.4.75 rdjac, read jog acceleration ... 61
4.4.76 rdJerkRel, read jerkrel ... 62

4.4.76.1 Axis qualifier jerkrel .. 62
4.4.77 rdjtvl, read jog target velocity .. 62
4.4.78 rdjvl, read jog velocity .. 63
4.4.79 rdledgn, read led green ... 63
4.4.80 rdledrd, read led red .. 63
4.4.81 rdledyl, read led yellow .. 63
4.4.82 rdlp, read latched position ... 64
4.4.83 rdlpndx, read latched position index .. 64
4.4.84 rdlsm, read left spool memory ... 65
4.4.85 rdMaxAcc – Read Maximum Acceleration Check ... 65
4.4.86 rdMaxVel – Read Maximum Velocity Check ... 65
4.4.87 rdMCiS – Read Move Commands in Spooler ... 66
4.4.88 rdmcp, read motor command port ... 66
4.4.89 rdMDVel – Read Maximum Velocity Skip ... 67
4.4.90 rdModeReg – Read MODEREG ... 67
4.4.91 rdmpe, read maximum position error .. 67
4.4.92 rdnfrax – read No-Feed-Rate-Axis .. 67

6 CONTENTS

4.4.93 rdPosErr, read Position Error .. 68
4.4.94 rdPcapIndex .. 68
4.4.95 rdrp, read real position .. 68
4.4.96 rdrpd – read real position in display unit ... 68
4.4.97 rdrv, read real velocity ... 69
4.4.98 rdSampleTime – Read Sample Time .. 69
4.4.99 rdsdec, read stop deceleration .. 69
4.4.100 rdsll, read software limit left ... 69
4.4.101 rdslr, read software limit right .. 70
4.4.102 rdslsp, read Slits / Stepperpulses .. 70
4.4.103 rdtp, read target position ... 70
4.4.104 rdtpd – read target position in display unit ... 70
4.4.105 rdtrac, read trajectory acceleration .. 71
4.4.106 rdtrovr, read trajectory override ... 71
4.4.107 rdtrovrst, read trajectory override settling time .. 71
4.4.108 rdtrvl, read trajectory velocity .. 72
4.4.109 rdtrtvl, read trajectory target velocity ... 72
4.4.110 rdzeroOffset, read zero offset ... 72
4.4.111 rifs, reset interface status register ... 73
4.4.112 RPtoDP, Real-Position to Desired-Position .. 73
4.4.113 rs, reset system ... 73
4.4.114 scp – set controller params ... 74
4.4.115 sdels, spooler delete synchronous .. 74
4.4.116 shp, set home position .. 74
4.4.117 spd, Spool Position Data ... 75
4.4.118 spda, Spool Position Data Absolute .. 75
4.4.119 spdr, Spool Position Data Relative .. 75
4.4.120 ssms, start spooled motions synchronous .. 76
4.4.121 sstps, spooler stop synchronous ... 76
4.4.122 sstvl, Spooler Set Target Velocity ... 76
4.4.123 ssf, Spool-Special-Function... 77

4.4.123.1 Notes on SSF wait commands ... 78
4.4.124 startcnct, start numeric controller task .. 78
4.4.125 stepcnct, step numeric controller task ... 79
4.4.126 stopcnct, stop numeric controller task ... 79
4.4.127 szpa, set zero position absolute .. 79
4.4.128 szpr, set zero position relative ... 80
4.4.129 txbf2, transmit binary file ... 81
4.4.130 txbfErrorReport, initialisation error report .. 82
4.4.131 uf, update filter ... 82
4.4.132 utrovr, update trajectory override .. 82
4.4.133 wraux, write auxiliary register .. 82
4.4.134 wrcbcnct, write common buffer CNC-Task .. 83
4.4.135 wrcd, write common double... 83
4.4.136 wrci, write common integer.. 84
4.4.137 wrControllerFlags– Write Controller Flags .. 84
4.4.138 wrdigo, write digital outputs ... 84
4.4.139 wrdigob, write digital output bit .. 85
4.4.140 wrdp, write desired position ... 85
4.4.141 wrdpoffset, write desired position offset .. 86
4.4.142 wrdvoffset, write desired velocity offset ... 86
4.4.143 wrEffRadius – Write Effective Radius ... 86
4.4.144 wrGCR, write gear configuration register .. 87
4.4.145 wrgf, write gear factor .. 87
4.4.146 wrgfaux, write gear factor auxiliary channel .. 87
4.4.147 wrhac, write home acceleration ... 88
4.4.148 wrhvl, write home velocity ... 88

CONTENTS 7

4.4.149 wripw, write in position window ... 88
4.4.150 wrjac, write jog acceleration .. 88
4.4.151 wrJerkRel, write jerkrel .. 89
4.4.152 wrjovr, write jog override ... 89
4.4.153 wrjtvl, write jog target velocity ... 89
4.4.154 wrjvl, write jog velocity ... 90
4.4.155 wrledgn, write led green .. 90
4.4.156 wrledrd, write led red ... 90
4.4.157 wrledyl, write led yellow ... 90
4.4.158 wrlp, write latched position .. 91
4.4.159 wrlpndx, write latched position index ... 91
4.4.160 wrMaxAcc – Write Maximum Acceleration Check .. 91
4.4.161 wrMaxVel – Write Maximum Velocity Check... 91
4.4.162 wrmcp, write motor command port .. 92
4.4.163 wrMDVel – Write Maximum Velocity Skip ... 93
4.4.164 wrModeReg – Write MODEREG ... 93
4.4.165 wrmpe, write maximum position error ... 93
4.4.166 wrnfrax, write No-Feed-Rate-Axis ... 94
4.4.167 wrrp, write real position ... 94
4.4.168 wrsdec, write stop deceleration ... 94
4.4.169 wrsll, write software limit left .. 95
4.4.170 wrslr, write software limit right ... 95
4.4.171 wrslsp, write Slits / Stepperpulses ... 95
4.4.172 wrtp – write target position .. 95
4.4.173 wrtrac, write trajectory acceleration ... 96
4.4.174 wrtrovr, write trajectory override .. 96
4.4.175 wrtrovrst, write trajectory override settling time ... 97
4.4.176 wrtrvl, write trajectory velocity ... 97
4.4.177 wrtrtvl, write trajectory target velocity .. 98

PM / PROGRAMMING AND REFERENCE MANUAL 9

1 Introduction

What is the content
of this manual?

 This manual contains all the details you will need for programming the
APCI-800x controllers. The complete documentation is divided into 3 parts:
OM (Operating Manual), PM (Programming and Reference Manual) and
CM (Commissioning Manual).

Which boards
belong to the
APCI-800x family?

 The APCI-800x family includes positioning and contouring control systems of the
third generation, i.e. the boards APCI-8001, APCI-8008, APCIe-8008 and
APCIe-8008-EC. Other boards are being planned.

Further remarks If the functions described in this manual do not apply to all devices of the
APCI-800x family, they are specially marked. In this case, the respective function
only applies to the marked device!
Before the various programming methods and operating modes can be presented,
we must first describe various functions provided by the rw_MOS operating system
software. You will find further information on rw_MOS in the Operating Manual,
Chapter 4.1.

10 PM / PROGRAMMING AND REFERENCE MANUAL

2 Internal details of the rw_MOS operating system software
As already mentioned in the Operating Manual, one of the main factors in the performance capabilities of the
APCI-800x controllers is the rw_MOS operating system software. The following chapters will describe the
functions implemented in rw_MOS, like profile generation or limit switch handling.

2.1 The APCI-800x position controller
The basic operating mode of the APCI-800x controllers is the position control mode. In this operating mode,
the board attempts to keep the motor position in the setpoint position. The control loop usually consists of
the following components: digital controller - digital/analog converter - power section - motor - encoder -
pulse acquisition. The encoder is in most cases attached directly to the motor, i.e. rigidly connected to the
motor axis.
If this is not the case, the transmission elements between motor axis and encoder axis are also incorporated
in the control loop. The load is also connected to the motor axis. The response of the control system is
determined by all the elements contained in the control loop and by the load. In any given system, the
control response can be influenced only by the filter parameters of the digital filter. Remember that all
possible operating cases (e.g. changes in load) have to be allowed for.

2.1.1 Control loop opened/closed

After power-up, the control loop is at first open. The value 0 is outputted on the manipulated variable output
(Motor-Command-Port). The connected axis can be traversed in uncontrolled mode by outputting a value.
The PCAP command cl() (close loop) is used to close the control loop. Note that the current position is
adopted as the setpoint position, in order to prevent the motor axis being traversed unintentionally.
Traversing profiles cannot be carried out until the position control has been activated. This also applies for
stepping motors.

2.1.2 PIDF filter

The digital filter has the structure of a real PIDF filter. Almost all controlled systems encountered in practice
can be stably adjusted with this type of controller.

2.1.2.1 The filter parameters KD, KI, KP

The setting procedure utilizes the filter parameters KD , KI and KP. The significance of these parameters can
be very simply understood in terms of the common parameters encountered in the literature: proportional
amplification KP , derivative-action time KD and integral-action time KI.

 KP - Proportional amplification
 KI - Integral-action coefficient
 KD - Derivative-action coefficient
 TV - Derivative-action time
 TN - Integral-action time

KI = KP / TN
KD = KP * TV

If a controller with a different structure is to be implemented, the individual components involved can be
simply de-activated by setting them to zero.

PM / PROGRAMMING AND REFERENCE MANUAL 11

2.1.2.2 Additional phase element

The digital PIDF filter provided is in the standard version cascaded with a first-order time-delay element with
a time constant of TA/2 (half the scan time). This is why it is referred to as a real PIDF filter. The filter
parameter KPL can now be used to reduce this time-delay still further, thus making a harder controller setting
possible. The KPL parameter may in theory assume any value between 0 and 1. In practice, however, a value
greater than approx. 0.95 is no longer expedient.

The connection between KPL and the time delay can be simply represented as:

 KPL - Filter parameter
 TDELAY - real time-delay of the PIDF filter
 TA - Scan time

 TDELAY = (1 - KPL) * TA / 2

2.1.2.3 Scan time

In the paragraph above, the scan time TA was used: this is a characteristic variable for the digital controller.
The scan time is the time after which setpoint and actual values are each scanned and the command value
is computed using the control algorithm. If the scan time is small compared to the system time constants
involved, the controller can be dimensioned like a continuous controller. This means that no special
knowledge of digital control engineering is required for adjustment purposes.

Note: In the APCI-800x standard version of the controller boards, the scan time has been set to
1.28 ms.

2.2 The APCI-800x profile generator
When traversing with the individual axes, the specified paths are approached with a trapezoidal speed
profile. For a trapezoidal speed profile of this kind, the determinant variables are initial velocity, initial
position, acceleration, maximum velocity, target position and target velocity. The profile generation feature
under discussion here generates the appropriate setpoint values for the position controller [chapter 2.1]
synchronously with the scans, so that starting from the current position the axis accelerates from the current
velocity up to the maximum velocity. The initial velocity and initial position are instantaneous values and are
not specified as parameters for a motion profile. Before the target position is reached, the profile generator
decelerates in good time with the specified deceleration, so that the target velocity is reached in the specified
target point.

2.2.1 Profile generation for JOG commands

There are certain special cases possible when running a trapezoidal speed profile with JOG traversing
commands (single-axis movements):

• The initial velocity is negative in relation to the traversing direction. This means that the axis is initially

traversing in the wrong direction, but decelerates, reverses and now accelerates in the right direction.
• The final velocity is negative in relation to the traversing direction. The axis initially moves beyond the

target point, decelerates, reverses its direction and has the target velocity when it reaches the target point
again.

• The initial velocity is equal to the maximum velocity.
• The initial velocity is higher than the maximum velocity. In this case, the axis is automatically decelerated

to the maximum velocity.
• The final velocity is equal to the maximum velocity.

12 PM / PROGRAMMING AND REFERENCE MANUAL

• The maximum velocity is not reached, because the axis has to be decelerated beforehand in order to
reach the target velocity by the time it gets to the target position. In this case, a triangular speed profile is
run.

All these cases will be correctly handled if the distance to be traversed is sufficient. In addition, a positive maximum
velocity and acceleration must always be specified and the final velocity must be smaller than or equal to the maximum
velocity. When a negative acceleration is stated, this will be utilized for the profile's braking ramp.
With JOG traversing commands, it is thus possible to program acceleration ramps and braking ramps with
differing degrees of steepness.

In the cases listed below, velocity jumps occur (undesirably high accelerations). If these cannot be
implemented by the system, a position error will occur, which will, however, generally be corrected after a
limited time period. When stepping motors are used, these cases cannot usually be permitted.

• The traverse distance specified is not sufficient for deceleration.
• The target velocity is higher than the maximum velocity. In this case, the traversing velocity is set to target

velocity at the end of the profile.

2.2.2 Profile generation for MOVE commands

When running a trapezoidal speed profile with MOVE traversing commands (multiple-axis movements with
interpolation) with one or more than one axis, the following special cases are possible:

• The final velocity is negative in relation to the traversing direction. The system first traverses beyond the

target point, decelerates, reverses direction and when it reaches the target point again possesses the
target velocity.

• The initial velocity is equal to the maximum velocity.
• The initial velocity is higher than the maximum velocity. With direct MOVE commands, the system

automatically decelerates down to maximum velocity in this case. With spooler commands, the initial
velocity is set to maximum velocity. This corresponds to a velocity jump.

• The final velocity is equal to the maximum velocity.
• The maximum velocity is not reached, since the system must decelerate beforehand in order to reach the

target velocity by the time the target position is reached. In this case, a triangular speed profile is run.

All these cases are handled correctly if the traverse distance is sufficient in each case. Furthermore, a
positive maximum velocity and acceleration must always be stated and the final velocity must be smaller
than or equal to the maximum velocity. If a negative acceleration or negative maximum velocity is stated, the
profile will be discarded.

With MOVE traversing commands, it is not possible to program acceleration ramps and braking ramps with
differing degrees of steepness in one traversing command. Should this be required, you can, however,
program several MOVE commands consecutively.

In the cases listed below, velocity jumps are involved, i.e. unwantedly high accelerations. If these cannot be
implemented by the system, a position error will occur, which will, however, generally be corrected again
after a limited time period. These cases must not as a rule be permitted in conjunction with stepping motors.

• The traverse distance stated is not sufficient for accelerating up to target velocity. In this case, the target

velocity is set to a value which can actually be reached within the profile stated. In this case, there will
however be no velocity jump.

• The traverse distance stated is not sufficient for deceleration. In this case, the profile's initial velocity is set
to a value which permits deceleration down to final velocity within the profile stated.

• The target velocity is higher than the maximum velocity. In this case, the traversing velocity is set to target
velocity at the end of the profile.

PM / PROGRAMMING AND REFERENCE MANUAL 13

• The traversing profile's direction is altered. In this case, the amount of the velocity vector is taken from the
previous direction and placed in the direction now to be traversed. In this case, there will be velocity
jumps of varying magnitude at the axes involved. Special caution is required here when stepping motor
systems are used.

This type of profile generation is not only executed when linear MOVE commands are being run. This pattern
is also used for generating the trajectory velocity when running circular movements with two axes.

2.2.3 Acceleration

If an acceleration smaller than zero is stated, then the data record is discarded with MOVE commands. With
JOG commands, a negative acceleration specifies the steepness of the braking ramp. As a default, the
braking ramp and the acceleration ramp are of identical steepness. The units for the acceleration can be
axis-specifically stated in the mcfg.exe utility program. For the interpolation commands (MOVE commands)
there are various options for selecting the units. The value for acceleration is specified as a floating-point
number, meaning that the value range is almost unlimited. If you specify an acceleration higher than the
system can implement, an enlarged position error will be produced during the acceleration phase.

2.2.4 Maximum velocity

The maximum velocity must always be specified as greater than zero, otherwise the data record will be
rejected (MOVE commands) or an endless profile will be run in the wrong direction (JOG). The units for the
maximum velocity can be axis-specifically specified in the mcfg.exe utility program. For the interpolation
commands there are various options for selecting the units. The value for the maximum velocity is specified
as a floating-point number, meaning that the value range is almost unlimited. If you specify a velocity higher
than the system can implement, an enlarged position error will be produced during traversing. If the
maximum velocity specified is smaller than the initial velocity, the conditions mentioned above shall apply,
depending on the command type involved.

2.2.5 Target velocity

The target velocity can be specified as positive, negative or set to 0. The direction of the target velocity is
always referenced to the direction of traversing. If traversing is in a negative direction and the target velocity
is positive, this means the system will continue to move in a negative direction. The target velocity has the
same unit as the maximum velocity. The value is specified as a floating-point number, meaning that the
value range is almost unlimited. If you specify a velocity higher than the system can implement, an enlarged
position error will be produced during traversing. If the target velocity specified is greater than the maximum
velocity, the traversing profile will be concluded with a velocity jump. The current velocity will in this case be
set to the target velocity at the end of the profile.

2.2.6 Velocity correction

In certain cases, you may want to alter the axis or trajectory velocity during execution of a trapezoidal speed
profile. A typical example of this is manual velocity correction (override). You have various SAP and PCAP
commands available for this purpose.
The velocity correction factor, whose default value is 1.0, acts on velocities and accelerations alike.
According to the operating mode it is important to differentiate the way the override is used by programming:
For one-axis traversing commands (JOG commands) the JOG override can be separately programmed for
each axis. Yet it must not be made by interpolation travel. For interpolation commands (MOV commands) the
trajectory override is to be set and taken over with the command utrovr synchronously for all axes, which
take part to the interolation travel. The synchronisation of the axes to be interpolated can only be ensured
this way. When the trajectory override is taken over, the value is automatically accepted as a JOG override
by the working axes. (can be switched off). To avoid velocity jumps during the programming of the override,
an adjustment time can be programmed for the trajectory-override.

14 PM / PROGRAMMING AND REFERENCE MANUAL

2.2.7 Target position / Traverse distance

The target can be specified as a relative or absolute value. If you specify a relative value, traversing will be
by the distance specified, i.e. you have programmed a traverse distance. If you specify an absolute value,
the system will traverse to the position specified, i.e. you have programmed a target position. The reference
point for absolute target positions is the machine zero.

2.2.8 Operating modes for command processing

Traversing commands and other commands can be executed in two different operating modes, the "direct
mode" and the "spool mode". The operating mode being implemented at any time is automatically specified
by the syntax of the command involved.

Note: The command abbreviations for the spool commands are distinguished from the direct commands by
the character 's' as the first letter in the command word. There are identical spool commands available for
both programming methods, SAP and PCAP programming alike.

2.2.8.1 Direct mode

Direct mode is activated automatically by calling special move and jog commands. When you program a
traversing command in direct mode, the program begins to execute the specified command after a system-
entailed time-delay (approx. 2 - 3 scan intervals). A profile which is already running will not be run till its end:
the instantaneous values for velocity and position will be accepted as initial values for the current traversing
command. If the profile data and the initial values are consistent, i.e. comply with the above requirements, a
currently running profile will be seamlessly continued.
It is thus possible, for example, to alter the target point of a running profile, to increase the velocity again, to
subsequently alter the deceleration of the braking ramp, or even alter the acceleration during an acceleration
ramp. If different profiles are to be run in succession, you have to wait for the end of the profile concerned in
each case.

Note: Any data present in the spooler will be rejected when commands are executed in direct mode.

2.2.8.2 Spool mode

In spool mode, a large number of traverse or other commands can be entered in a queue (spooler). Each
axis has its own spooler. Once an interpolation command has occurred, the respective spoolers are
synchronously loaded and processed. Processing of the commands entered in the spooler is started by the
PCAP command ssms(), for example. During processing, you can write further commands into the spooler.
Commands from the spooler are processed one after another without any time-delay. The free spooler area
becomes smaller each time a command is entered, but becomes larger again every time a command is
executed. When all commands in the spooler have been processed, the system automatically switches back
to direct mode, i.e. after more spool commands have been entered, their processing has to be started anew.

Note: For the spooler entries to be processed correctly, the following conditions are to be satisfied:

• All axes for which commands are to be spooled must be in position control at the first spooler

entry.
• The velocity of these axes must be zero before the first spool command is executed, which is

why the Start Spooled Motions Synchronized ssms() command may be executed only when all axes
involved are at rest.

• Traverse profiles in the spooler need an execution time that is higher than the scan time of
the control (default: 1.28 ms). The execution time of a traverse profile is calculated (approx.) by way /
velocity. Shorter traverse profiles must be suppressed by the application program.

PM / PROGRAMMING AND REFERENCE MANUAL 15

2.2.8.3 Additional notes on spooler operation

In order that a contour programmed with spooler commands can be run on an accurate path, within a
command sequence, all axes must always be programmed and started synchronously. Furthermore, any
override value must always be taken over synchronously for all interpolation axes (utrovr command). As
soon as the spooler operation is interrupted by an asynchronous operation, it can be expected that the
programmed contour is not complied with. Automatic spooler synchronisation monitoring can be used to
detect this type of error. This is available from RWMOS V2.5.3.88.
If an asynchronous spooler operation is detected by the operating system, the SAF (#19) bit is set. If the
JSatSAF (#28) bit is set in the MODEREG register, in this case, all axes are stopped via Jog-Stop using the
programmed stop deceleration. This error event is indicated by the corresponding saf Flag in axst and bit 19
in ErrorReg (see also Chapter 4.4.63.1).
By calling a Jog or direct Move command, SAF flags potentially set are deleted again.

2.3 Interpolation with APCI-800x

Individual axes are moved with the board APCI-800x using the jog commands. The move commands are
available for moving more than one axis in interpolated mode. The APCI-800x boards enable you to perform
circular, linear and helical interpolations. It can process several interpolation profiles simultaneously, with any
initial and final velocities you want. All interpolation computations are synchronized with the scan function
(1.28 ms).

2.3.1 Linear interpolation

With linear interpolation, any desired number of axes are moved on a line of space (n-dimensional) from the
starting point to the target point (absolute positioning) or by a space vector (relative positioning). Parameters
used in linear interpolation are the axes involved, the traverse distance or the target position, the trajectory
acceleration, the maximum trajectory velocity and the trajectory target velocity. When interpolating with an
initial velocity, you should make sure that the direction vectors for the initial velocity and for the interpolation
profile coincide. Otherwise the direction of the velocity vector will be altered and this may lead to velocity
jumps at the axes involved. If the interpolation direction has to be altered from one profile to the next, an
intermediate stop should be made. For direction reversal, there is an option for ending the first profile with
negative target velocity.

2.3.1.1 Formal linear interpolation

When running contours, one axis can remain in the instantaneous motor position, while the other axes are
run in interpolated mode. This stationary axis can, however, participate formally in this interpolation for the
other axes and thus remains synchronized with them. This formal interpolation is particularly important in the
spool operating mode and is selected automatically for all axes at which a traverse distance of 0 is
programmed.

16 PM / PROGRAMMING AND REFERENCE MANUAL

2.3.2 Circular interpolation

Circular interpolation is performed with any two axes. Parameters used for circular interpolation are the axes
involved, the coordinates of the circle's centre, the traverse angle (positive or negative), the trajectory
acceleration, the trajectory maximum velocity and the trajectory target velocity. The coordinates of the
circle's centre can be specified in absolute or relative coordinates.
When interpolating a circle with an initial velocity, you must always make sure that the initial velocity has the
direction you want, i.e. the direction of the tangent in the circle's starting point. Otherwise the direction of the
velocity vector will be altered and this may lead to velocity jumps at the axes involved. If the interpolation
direction has to be altered from one profile to the next, an intermediate stop should be made. For direction
reversal, there is an option for ending the first profile with negative target velocity.

2.3.3 Helical interpolation

Helical interpolation is executed for any two axes as a circular interpolation and with any third axis as a linear
interpolation.

2.3.4 Surface area processing

For interpolation commands the trajectory parameters speed and acceleration are defined with the system
parameters PositionUnit (PU) and TimeUnit (TU). The conditiotion is that axes of the same type (translatory
or rotatory axes) always take part to the interpolation travel. This is to ensure that the PositionUnit is
processed appropriately. When only rotatory axes are involved in translatory interpolation travel as for
example by processing cylinder surface. the effective radius must be defined. It will then enable the
conversion of the rotatory axes values in translatory interpolation values.
For this, the axis-specific value effradius is available. The trajectory speed and acceleration can be set
correctly. The radius is given in the unit set in the linear interpolation. This setting is possible for linear,
circular as well as helical interpolation.

Example:

The surface of a pipe must be welded. This pipe has a diameter of 200mm and is turned with an axis C
defined as rotaroryt.

PU := 0; // Position Unit = mm
C.effradius := 100; // Enter radius

The axis C kann nows be used in the linear interpolation:

mlr (X := 25, C := 60);

The traverse distance of the rotatory axis is given in the translatory position unit (here mm). In case the
traverse distance of the rotary axis must be given in the axis-specific rotatory unit (e.g. deg), the Bit 10 must
set in the register MODEREG (see chapter 6.3.1.5). The conversion can be made simultaneously for all
axes.

2.3.5 Synchronous and asynchronous interpolations

One of the options provided by the APCI-800x board is to process several different interpolations at the
same time. It is possible, for example, to execute two circular interpolations with two different axis channels
each. The interpolations concerned can be executed synchronously or asynchronously with each other. The
synchronous operating mode is supported particularly well by the spooler mechanism. Of course, besides an
interpolation, any other axis you want that is not used in an interpolation context can be run independently.

PM / PROGRAMMING AND REFERENCE MANUAL 17

2.4 APCI-800x limit switch handling

The APCI-800x board offers a wide range of options for limit switch handling and traversing range limitation.
You have options, for example, for configuring any one or more digital inputs as left or right hardware limit
switches. During configuration, a TOM, SMA or SMD function is additionally assigned to the limit switch
input. What's more, you can additionally define a software limit switch (left and right) for each axis channel.
You can select any limit switch positions you want. Here too, you can choose between the TOM, SMA and
SMD functions. The state of the limit switches can be taken from the axst status flag.
A particular limit switch state is erased if the setpoint position is below the limit switch position.

Note: All limit switch states are erased when the control loop is closed [chapter 4.4.6 - cl()].

2.4.1 TOM limit switch function (Turn-Off-Motor)

With this limit switch function, the motor is turned off in the limit switch direction, i.e. the axis comes to rest in
uncontrolled mode when the limit switch is tripped and cannot be moved further into the limit switch zone,
only against the limit switch direction. The setpoint position can, however, continue to run into the limit switch
zone, e.g. due to a profile currently being run. When it exits from the limit switch zone, uncontrolled velocity
jumps may occur.

2.4.2 SMA limit switch function (Stop-Motor-Abruptly)

With this limit switch function, the setpoint position is retained when the limit switch position is exceeded. The
position controller halts the axis in this position. The setpoint position computed by the profile generator will,
however, be correctly continued internally. When the setpoint value position leaves the limit switch zone,
uncontrolled velocity jumps may occur.

2.4.3 SMD limit switch function (Stop-Motor-Decelerate)

With this limit switch function, the axis concerned is decelerated with the stop deceleration {sdec} specified
down to zero velocity. The axis is switched to direct mode and any spooler entries are discarded. It is no
longer possible to perform further controlled traversing into the limit switch area. The axis can be moved out
of the limit switch area with all traversing commands. This is the multi-purpose limit switch function.

2.5 Other function groups

2.5.1 Application-specific system variables

In the RWMOS system software, system-specific variables may be available. These variables are adapted
and documented specifically to requirements and may be available in any number. For such variables, there
are access mechanisms for integer and floating point values:

For this, in the PCAP programming environment, there are the read functions rdSysVarInt and rdSysVarDbl,
and the write functions wrSysVarInt and wrSysVarDbl.
In the stand-alone programming environment, access to the system variable SysVarInt[] or SysVarDbl[] is
indexed.

 CI0 := SysVarInt[1];

18 PM / PROGRAMMING AND REFERENCE MANUAL

2.5.2 Application-specific axis variables

In the RWMOS system software, axis-specific variables may be available. These variables are adapted and
documented specifically to requirements and may be available in any number. For such variables, there are
access mechanisms for integer and floating point values:

For this, in the PCAP programming environment, there are the read functions rdAxVarInt and rdAxVarDbl,
and the write functions wrAxVarInt and wrAxVarDbl.

In the stand-alone programming environment, access is indexed by means of the axis qualifiers varint[] or
vardbl[].

 CI0 := A3.varint[1];

PM / PROGRAMMING AND REFERENCE MANUAL 19

3 APCI-800x Programming methods
One of the important features of the APCI-800x positioning and contouring control system is the real-time
multi-task operating system rw_MOS (Mips Operating System).
This is contained in the rwmos.elf file and is loaded, once per PC boot, into the local main memory of the
APCI-800x board within a few seconds, using the mcfg.exe boot menu or a user program.
The rw_MOS operating system software is divided up into various tasks, which basically provide for two
different kinds of user programming.

Note: rwmos.elf and mcfg.exe form part of the APCI-800x TOOLSET software. You will find further
information in the Operating Manual.

3.1 PC application programming (PCAP programming, or direct
programming)

The APCI-800x application programming (PCAP) is handled with a user program running on the PC.
Programs are written using a higher-level programming language like Borland C, Microsoft C, Borland Delphi
or Microsoft Visual Basic. By using the function libraries included in the scope of delivery for these
programming languages, you can draw on a powerful reservoir of commands, enabling you to create your
programs quickly and effectively. The commands available include traversing commands, for example, with
and without interpolation, input/output commands, interrogation commands, spool commands, etc.
A typical application program transmits one or more of these commands to the APCI-800x board and then
waits for these orders to be processed. After the commands concerned have been autonomously executed
by the PC-Task in the rw_MOS operating system, new command orders can be transferred to the PC-Task.
The time between command order and command processing can be utilized by the application program to
perform other application-specific tasks.
Since programming is performed by directly accessing a PC application program, this programming method
is also referred to as "PC direct programming".

Note: In the following chapters, you will occasionally find the term "PCAP command". This type of command
is based on the programming method outlined above.

3.2 Stand-alone application programming (SAP programming)
In contrast to PC application programming, stand-alone application programming permits a program to be
processed entirely without the aid of a PC application program. An application program written in the
rw_SymPas programming language is compiled using the NCC compiler integrated in the development
environment mcfg.exe or the commando line compiler ncc.exe and generates an operating program which
the APCI-800x board can understand.
This operating program can be loaded onto the APCI-800x board and is executed autonomously using the
CNC-Task (CNC = Computerized Numerical Control) in rw_MOS. If synchronization is required between a
PC application program and the APCI-800x board stand-alone program, this can be carried out using
predefined system variables, which both system partners (PC and APCI-800x board) can access.

Note: In the following chapters, you will often encounter the term "SAP command". This type of command is
based on the programming method outlined above.

20 PM / PROGRAMMING AND REFERENCE MANUAL

3.2.1 SAP-Multitasking

The operating system software rw_MOS can process up to 4 SAP programs simultaneously. All tasks
executed simultaneously have the same priority. The different tasks are addressed by means of numbers.
The smallest task number has the value of 0 and the largest thus the value of 3.
Multitasking programming enables a complex task to be divided up into small, easy-to-handle subtasks. For
example, one task could be used for reference travel, another for monitoring the drive with appropriate
EVENT handlers and yet another for PLC control pure and simple, with appropriate accessing of digital I/O or
PC communication with predefined registers.
The various SAP programs can autonomously stop, start or continue by means of various task control
commands.
The CNC tasks are synchronized with each other, synchronization with any parallel-running PCAP
application program and exchange of data between these, can be carried out using predefined registers,
what are referred to as COMMON variables. 1,000 common integer and 1,000 common floating-point
registers are available to all CNC tasks for this purpose.
Each CNC task can also utilize a local memory area of 1,000 bytes (COMMON BUFFER), which the PC and
the CNC task involved can access in both read and write modes. This can be used to build up a user-specific
command set, for example.

PM / PROGRAMMING AND REFERENCE MANUAL

4 PC application programming

4.1 Introduction
The APCI-800x TOOLSET Software includes library functions for the programming languages Borland
Delphi,
C (e.g. Borland C++Builder, Microsoft Visual C++) and Microsoft Visual Basic. These are programming tools
for the Windows platforms Windows 95, 98, Me, Windows NT 4.0, Windows NT Embedded 4.0, Windows
2000, XP, Vista and Windows 7. The individual functions of the high-level language libraries are executed by
using the system driver mcug3.dll. The meaning of the individual function parameters and their data types is
identical for all programming languages listed above.
Integration of the function libraries into the programming language involved is explained below:

Programming language Use description
Borland Delphi The name of the function library is mcug3.pas. These functions are used to

establish the link between the PC application program and the system driver
mcug3.dll. This file is declared as a unit and is linked to the application program by
means of the uses statement.
Important: Various system parameters possess the data type double. This means
that the user program has to be compiled with the {$N+} option!

C (Borland C,
Microsoft C or others)

The function library's name is mcug3.lib. These functions are used to establish the
link between the PC application program and the system driver mcug3.dll. The Lib
files are available for various C programming tools and are to be linked with the
application program. The file mcug3.h contains the function declarations. It should
be incorporated in the application program by using the #include-instruction.

Microsoft Visual Basic The name of the function library is mcug3.bas. The link between PC application
program and the system driver mcug3.dll is created by the functions declared in
mcug3.bas. This file is available as a basic module and can be inserted in the
project environment of the application program.

4.2 Example programs for using the function libraries

The example programs included in the APCI-800x TOOLSET software show simple applications for the
functions described below. The source texts for the example programs are provided with comments to render
them self-explanatory. So there is no need for a detailed description of these example programs at this point.
The individual example programs for the two programming languages can be found in the subdirectories
specified here and have the following names:

Programming language Sub-directory Files
Borland Delphi Delphi mcug3.pas, ld.pas, move.pas etc.
Borland C++ Builder C

C/Borland
mcug3.h, ld.c, move.c etc.
mcug3.lib

Microsoft Visual C++ C
C/mvc

mcug3.h, ld.c, move.c etc.
mcug3.lib

Microsoft Visual Basic Vb mcug3.bas, ld.bas, move.bas etc.

22 PM / PROGRAMMING AND REFERENCE MANUAL

4.3 Definitions, structures and records
Before the individual functions are explained, certain definitions, structures and records will be described,
some of which are required as parameters for these functions. The structure/record data fields required are
always declared in the application program. The advantage of this is that the system driver does not take up
too much PC RAM memory and that several PC applications can access the APCI-800x controllers at the
same time.
All the structure/record types and system constants listed below have been defined in the mcug3.h,
mcug3.pas or mcug3.bas files using the programming languages mentioned above.

4.3.1 Definitions

Table 1: System constants
Name Type Function
MAXAXIS integer Maximum number of possible axes. Currently, the TOOLSET software supports up

to 18 axes.
Warning: This value must not be modified!

LONGINT integer
int
long

Synonym for the data type int or integer in the C or DELPHI Pascal programming
language and longint in the Microsoft Visual Basic programming language.

4.3.2 Structures, records and types

Depending on the programming language involved, we speak either of structures (C), records (Pascal) or
types (Visual Basic). The composition and the functioning of these data types is identical in all programming
languages. In the description below the term structure or record type is used. For easier comprehension, all
structure or record types are written in capitals and their components in lower-case characters.

4.3.2.1 Structure/record type AS

Table 2: Structure/record type AS
Element Type (Abbreviation meaning), Function
unoa LONGINT (used number of axis) Number of axes to be selected at various

function calls.
san Field with MAXAXIS LONGINT (selected axis number) Field of the axes to be

selected. This field must be initialized beginning with Index 0,
depending on the number of axes used.

Note: Counting for axis channels begins with the value 0.

Example: Selecting the first and third axes

as.unoa = 2; // number of axes
as.san[0] = 0; // first axis
as.san[1] = 2; // third axis

PM / PROGRAMMING AND REFERENCE MANUAL

4.3.2.2 Structure/record type TSRP

A structure/record type TSRP has to be declared for each axis to work with the individual axis systems.
Using the structure/record elements contained in TSRP, data are exchanged with the APCI-800x board at
various PCAP commands. For example, axis-specific system variables like accelerations, velocities and
positions can be interrogated or set using special read and write commands.
Important: The individual elements of the TSRP structure are not initialized automatically, i.e. you have to
update them by setting them directly and reading them in beforehand.
Note: You have to make sure that, when more than one axis channel are used, the TSRP structures/records
are located directly behind each other in memory, since the system driver mcug3.dll sometimes accesses the
various axis parameters using address computations. Therefore the data alignment has to be defined on 4
bytes if necessary. Correct arrangement in the PC's main memory is reliably achieved by declaring TSRP as
a field variable.
The size of the field is to be defined for the MAXAXIS axes.

Before use, this data structure must have been initialised. The initialisation is done, e.g. with the commands
InitMcuSystem, InitMcuSystem2 or InitMcuSystem3. In the most cases an instance of this data structure for
each control in the system is defined globally and is initalised when calling the program or after booting of the
control. A use of locally declared instances without previous initialisation is not allowed and can lead to
unexpected error functions.

Table 3: Structure/record type TSRP (axis-specific parameters)
Element Type (Abbreviation meaning), Function
an LONGINT (axis number)
kp double (PIDF filter parameter kp)
ki double (PIDF filter parameter ki)
kd double (PIDF filter parameter kd)
kpl double (PIDF filter parameter kpl)
kfca double (PIDF forward compensation acceleration)
kfcv double (PIDF forward compensation velocity)
jac double (jog acceleration)
jvl double (jog velocity)
jtvl double (jog target velocity)
jovr double (jog override)
hac double (home acceleration)
hvl double (home velocity)
rp double (real position)
dp double (desired position)
tp double (target position)
sll double (software limit left)
slr double (software limit right)
ipw double (in position window)
mpe double (maximum position error)
gf double (gear factor)
mcp LONGINT (motor command port)
axst LONGINT (axis status)
lsm LONGINT (left spool memory)
epc LONGINT (eeprom programming cycle)
digi LONGINT (digital inputs)
digo LONGINT (digital outputs)
ifs LONGINT (interface status)

24 PM / PROGRAMMING AND REFERENCE MANUAL

Element Type (Abbreviation meaning), Function
scratch Field with 4

times
LONGINT

(scratch field) wildcard for next TSRP record

4.3.2.3 Structure/record type TRU (Trajectory Units)

This structure or record type is a parameter for the PCAP command ctru().

Table 4: Structure/record type TRU
Element Type Abbreviation meaning/Function
pu LONGINT position unit
tu LONGINT time unit

4.3.2.4 Structure/record type LMP (Linear Motion Parameters)

This structure or record type is a parameter with all linear interpolation commands.

Table 5: Structure/record type LMP
Element Type (Abbreviation meaning), Function
ac double (acceleration) trajectory acceleration
vl double (velocity) trajectory velocity
tvl double (target velocity) trajectory target velocity
dtm Field with MAXAXIS

double
(distance to move) This field must be initialized in accordance with the
index of the axes used. Index counting begins from 0.
The traverse distances desired are entered into the
individual elements to suit the positioning mode involved (absolute or
relative). The entries in this data field must correspond with the selected
axes in the AS structure/record type.
E.g. the traverse distance of the 5th axis (axis index 4) always must be
entered in the element dtm[4]

4.3.2.5 Structure/record type CMP (Circular Motion Parameters)

This structure or record type is a parameter with all circular interpolation commands.

Table 6: Structure/record type CMP
Element Type (Abbreviation meaning), Function
ac double (acceleration) trajectory acceleration
vl double (velocity) trajectory velocity
tvl double (target velocity) trajectory target velocity
phi double traverse angle in degrees
dtca1 double (distance to center x-axis)
dtca2 double (distance to center y-axis)

The assignment of dtca1 and dtca2 to the desired axis channels is established
with the structure/record type AS. The axis channel entered there in Field 0 is the
x-axis. The y-axis is correspondingly entered in Field 1.

PM / PROGRAMMING AND REFERENCE MANUAL

4.3.2.6 Structure/record type HMP (Helical Motion Parameters)

This structure or record type is a parameter with all helical interpolation commands.

Table 7: Structure/record type HMP
Element Type (Abbreviation meaning), Function
ac double (acceleration) trajectory acceleration
vl double (velocity) trajectory velocity
tvl double (target velocity) trajectory target velocity
phi double traverse angle in degrees

The sign determines the circular direction.
If the traverse angle ≤ 1e-100 a circle is run according to information of the
target point.

dtca1 double (distance to center x-axis)
dtca2 double (distance to center y-axis)
dtm Field with MAXAXIS

double
(distance to move z-axis and higher) This field must be initialized in
accordance with the index of the axes used. Index counting begins from 0.
(see also LMP).
The traverse distances desired are entered into the
individual elements to suit the positioning mode involved (absolute or
relative).
By running a circle specified by the traverse angle, the traverse direction
amd target points of the axes to be linearly interpolated are entered from
Index 2.
By running a circle specified by the target point, the target points of the
circular axes are entered as well.

4.3.2.7 Structure/record type HMP 3D (Helical Motion Parameters 3-Dimensional)

This structure or record type is a parameter with all 3D interpolation commands.

Table 8: Structure/record type HMP3D
Element Type (Abbreviation meaning), Function
ac double (acceleration) trajectory acceleration
vl double (velocity) trajectory velocity
tvl double (target velocity) trajectory target velocity
phi double traverse angle in degrees

The sign determines the circular direction.
Running with target point instructions is not possible here.

dtca1 double (distance to center x-axis)
dtca2 double (distance to center y-axis)
dtca3 double (distance to center z-axis)
pn1 double Surface normal X-vector
pn2 double Surface normal Y-vector
pn3 double Surface normal Z-vector
dtm Field with MAXAXIS

double
reserved for future program extensions

26 PM / PROGRAMMING AND REFERENCE MANUAL

4.3.2.8 Structure/record type ROSI (Risc Operating System Information)

This structure or record type is a parameter for the PCAP initialization command mcuinit(). After successful
initialization of the APCI-800x board, the following rw_MOS data (rwmos.elf) are entered in the ROSI
structure:

Table 9: Structure/record type ROSI
Element Type (Abbreviation meaning), Function
revision Field with

SIZE_STRREV
characters

Current software revision of the rw_MOS operating system software.

number_axis LONGINT Number of axis channels available
sysfile_loaded LONGINT This status variable indicates with the value 1 whether

the system file has already been transferred to the APCI-800x board.

Note: You can use the PCAP load command InitMcuSystem2() or InitMcuSystem3() to transfer the
system.dat system file (which is altered mainly by means of the TOOLSET program mcfg.exe) to the APCI-
800x board, where it will trigger initialization of intra-system parameters like accelerations, velocities, filter
coefficients, limit values, etc. This load operation must be run once per system boot.

4.3.2.9 Structure/record type CBCNT (Common Buffer CNC-Task)

Each CNC task is provided with a local memory area with a size of 1,000 bytes (COMMON BUFFER), which
both the PC and the CNC task involved can access in both read and write modes. This buffer can be used,
for example, to build up a user-specific command set.

The structure/record type CBCNCT is a parameter for the PCAP commands rdcbcnct() and wrcbcnct(),
which can be used to read or write the COMMON BUFFERs.

Table 10: Structure/record type CBCNCT
Element Type (Abbreviation meaning), Function
Task number LONGINT Task number (0..3)
Size LONGINT Size of buffer [Bytes]
Buffer Pointer Pointer to a buffer which is to be transferred to the APCI-800x board, or

read in from the APCI-800x board. The buffer must be at least size bytes in
size!

PM / PROGRAMMING AND REFERENCE MANUAL

4.3.2.10 Structure/record type CNCTS (Computerized Numerical Control Task Status)

This structure/record type is a parameter for the PCAP status interrogation command rdcncts().

Table 11: Structure/record type CNCTS
Element Type (Abbreviation meaning), Function
errnum LONGINT Internal CNC task error number. If no error has occurred, then errnum has

the value 0. Information about runtime errors can be found in section 6.8
errline LONGINT In connection with errnum, this element is used to display the error-causing

source text line of the CNC stand-alone application program.
stackfree LONGINT Currently free stack areas [bytes] for the CNC task.
running LONGINT This status word shows in Bit 0 whether the CNC task is currently

processing a program.
Bit 1 shows that the task is in single step operating mode, the system waits
for a step (stepcnct) or continuation command (contcnct). If in the Halt-
mode Bit 2 is set, it is indicated that the Task-stopp was caused by the
SAP-command writelin. (see also notes to the register MODEREG Bit26 in
section 6.3.1.5).
Bit 3 indicates that the task is currently in wait state (wt or wait for “End of
Profile”).

csrcline LONGINT Line number in the source text, which is being executed

4.4 PCAP high-level language function reference list

4.4.1 Structure of the reference list

The function and command reference list is sorted alphabetically. The descriptions for the individual
commands and functions are structured as follows:

Element Description
FUNCTION NAME: This is the name which is used to call the function subsequently described.
ABBREVIATION MEANING: Here you will find a detailed description of the function name concerned.
BORLAND DELPHI : Here you will find the prototype definitions for the Borland Delphi programming

language (Pascal programming language). The parameters necessary to call up
the function are listed.

C: Prototype definition for the C programming language, e.g. Microsoft Visual C++ or
Borland C++Builder otherwise for Borland Delphi.

VISUAL BASIC: Prototype definition for the Microsoft Visual Basic or Borland Delphi programming
language.

TSRP COMPONENTS: Various functions require components of the structure or record TSRP as
parameters. They are listed here.

DESCRIPTION: Plaintext description of the command.
RETURN VALUE: If the function returns a value, you will find here a description.
NOTE: For recurrent notes and explanations, you will find a cross-reference to the

corresponding chapters here.
EXAMPLE: Occasionally, examples are given for the function calls involved.

28 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.2 General information

All commands and functions, except the spool commands, are executed immediately after being called.
For all move and jog commands, you must make sure before they are executed that the axes involved have
been switched into position control beforehand (PCAP command cl()). In addition, some of the motion
functions require differentiation between absolute and relative traversing commands. The absolute traversing
commands are executed in the absolute measurement system, i.e. are referenced to the machine zero. The
relative traversing commands are executed incrementally, i.e. starting from the current motor position.
The end of profile processing is indicated both in direct mode and in spool mode by the pe flag in the axst
register of the structure/record TSRP [chapter 4.4.45 - rdaxst()].
In the case of the axis-specific motion commands, (jog commands), all system parameters like positions,
traverse distances, accelerations and velocities are specified in the axis-specific units stated in the
TOOLSET program mcfg.exe. For the interpolation commands (move commands), the units selected in the
TRU structure (record) are utilised. This means that a PCAP function is to be called up before executing the
move commands.
Conversion between application-specific and intra-system units is made automatically, using the factors
specified in mcfg.exe. Conversion is determined by the encoder resolution or step number, the gear factor
and the distance and time units selected.

4.4.2.1 Function values and function return values

The function value is the value which is to be read by the control system in the event of a read command.
The function return value is the value returned through a command call. In many cases, this is not the
function value but a value indicating success or an error information concerning a DLL function call. Write
commands may also send a function return value; but it is not sent by all functions.
If the operating system of the motion control board is stopped due to an unexpected event on the board,
such as an exception, or through user intervention in a program running in parallel, the following happens in
a user program that calls DLL functions:
In the call during or after the event, the function is stopped without success after a time-out of several
seconds. Success of the call can only be determined with functions which return status information on
success.
Once the communication via DLL has been interrupted, it can only be re-established through reinitialisation,
for example via InitMcuSystem3(). This is possible, for instance, when the board has been rebooted by a
program or by itself. But mostly in this case, a complete reinitialisation of the application is required anyway.

4.4.3 azo, activate zero offsets

DESCRIPTION: Each axis channel can be assigned five different zero offsets. You can use the
azo() command to activate the axis-specific offset parameters you want. In the set
(or set_) parameter, you specify which set of zero offsets is to be activated.
This variable, with the value 0 .. 4, is used to select the set of zero offsets you
want. But if the variable has a value greater than 4, no zero offsets will be taken
into account any more.

BORLAND DELPHI: procedure azo(set_: integer);
C: void azo(int set);
VISUAL BASIC: Sub azo(ByVal set_ As Long)
NOTE: Zero offsets are used to specify a new system of coordinates, without having to

influence (new setting) the actual machine zero. The currently set position value of
the zero offset can be read with the command rdZeroOffset (Chapter 4.4.110).

RETURN VALUE: None

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.4 BootErrorReport, initialisation error report

DESCRIPTION: This functions explains in plaintext the error return values of the function BootFile()
described below. A message box displays it on the screen. The user has then to
close it.

BORLAND DELPHI: procedure BootErrorReport(filename:PChar; error:integer);
C: void BootErrorReport(char *filename, int error);
VISUAL BASIC: Sub BootErrorReport (ByVal filename As String, ByVal error As Long)
NOTE: PCAP command BootFile()
EXAMPLE: booterror = BootFile(...); // execute boot sequence

BootErrorReport(..., booterror); // In case of error, display error return value
RETURN VALUE: None

4.4.5 BootFile, boot operating system file

DESCRIPTION: The function transfers the operating system software (rwmos.elf) to the control
process. The system is reset first. Afterwards the file specified in BootFileName
(usually rwmos.elf) is loaded for the control.

BORLAND DELPHI: function BootFile(var BootFileName:string; TpuBaseAddress: integer):integer;
C: int BootFile(char* BootFileName, int TpuBaseAddress);
VISUAL BASIC: Function BootFile(ByVal filename As String, ByVal TpuBaseAddress As Long) As

Long
NOTE: After successful booting the function InitMcuSystem2() or InitMcuSystem3() is to be

called up in order to initialise the control completely.
TpuBaseAddress is available to be compliant with the PA 8000 controller and is to
be initialised with the value 0.

RETURN VALUE: The function delivers return values as follows:

Return value Error description
0 No error, boot process is completed successfully
10 The file name specified in BootFileName is not correct.
11 The file specified in BootFileName cannot be opened.
12 Unknown file format. At the moment only files with

ELF file format are allowed
13 Incorrect ELF file format or transfer error.
14 An incorrect start address in RWMOS.ELF has been

detected. RWMOS.ELF may be incorrect.
15 Incorrect platform for RWMOS.ELF

The used RWMOS.ELF is not suited for the available
hardware platform.

16 Verify has failed while transferring the boot file, the file has
been incorrectly transferred.

200 Flash memory system of the target system cannot be
accessed.

201 Incorrect flash memory size in the target system
202 The required device addresses of the target system

cannot be accessed.

30 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.6 CardSelect

DESCRIPTION:

With this function you can select an APCI-800x controller if several should be
installed in the PC. The selection is active until the function CardSelect is called for
another device or until the application is terminated. After the selection all
commands of the mcug3.dll, which are called within the application, refer to to
selected device.

BORLAND DELPHI: function CardSelect (CardNum: integer): integer;
C: int CardSelect (int CardNumber);
VISUAL BASIC: Function CardSelect (ByVal CardNr As Long) As Long
PARAMETER: Index of the board in the PC (0, 1, ...)
RETURN VALUE: Index of the board that has been selected successfully. –1 if the selected device is

not in the PC (in this case, the device is selected with Index 0).
Before using this command, one of the InitMcuSystem commands must be
called up so that the internal list of available devices is up-to-date.

NOTE: See also CM, Chapter 5.3

4.4.7 ClearCI99

DESCRIPTION:

With this function, the common integer variable CI99 is reset synchronously to the
operating system software RWMOS.ELF.

BORLAND DELPHI: procedure ClearCI99 ();
C: void ClearCI99 (void);
VISUAL BASIC: Sub ClearCI99 ()
PARAMETER: none
RETURN VALUE: none, the variable CI99 is set to 0
NOTE: This function has to be used when the ssf functions 1005 – 1025 for the

synchronisation of spooler commands are used.

4.4.8 cl, close loop

DESCRIPTION:

All axis channels specified in AS are brought into position control with this
command. Note that the actual positions of the axes involved are accepted as
setpoint positions, in order to avoid large system deviations. In addition, all digital
outputs planned with PAE are set. These outputs can, for example, be used for
controlling relays, which in turn can be used to enable power amplifier units.
Depending on the selected axis channel, the release relays of the assigned axis
channel are switched on (CM / Chapter 5.2.10).

BORLAND DELPHI: procedure cl(var as:AS);
C: void cl(struct AS far *as);
VISUAL BASIC: Sub cl(DASEL As ASEL) 'close loop
NOTE: The position control causes the PIDF filter to be processed with the appropriately

set filter coefficients.
When the position control loop is closed, all spooler data for the axis channels
specified will be rejected!
See also PCAP command clv().

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.9 clv, close loop velocity

DESCRIPTION:

All axis channels specified in AS are brought in position control with the command.
The actual positions of the axes involved are accepted as setpoint positions and
the actual speeds as setpoint speeds in order to avoid large system deviations. In
addition, all digital outputs planned with PAE are set. This command is to be used
when the axes are moving before the control loop is closed. The corresponding
axes obtain the current speed when the control loop is closed and are running
further with this command. They can now be decelerated e.g. through js() to
prevent a hard stop of the axes when the control loop is closed.
Depending on the selected axis channel, the release relays of the assigned axis
channel are switched on (CM / Chapter 5.2.9).

BORLAND DELPHI: procedure clv(var as:AS);
C: void clv(struct AS far *as);
VISUAL BASIC: Sub clv(DASEL As ASEL) 'close loop velocity
NOTE: See also PCAP command cl()

4.4.10 contcnct, continue numeric controller task

DESCRIPTION: You can use this command to continue a SAP program which has previously been
halted with the SAP command STOP, STOPCNCT() or with the PCAP command
stopcnct(). The task selected in TaskNr (values 0..3) will be continued.

BORLAND DELPHI: procedure contcnct(TaskNr:integer);
C: void contcnct(int TaskNr);
VISUAL BASIC: Sub contcnct(ByVal TaskNr As Long)
NOTE: A SAP program which has been halted with the SAP command ABORT, can only

be restarted (i.e. not continued) with the SAP command STARTCNCT() or the
PCAP command startcnct().

32 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.11 ctru, change trajectory units

DESCRIPTION: This command can be used to switch over the units for the velocity, acceleration
and position parameters of all interpolation commands (move commands). The
parameters are specified in the units selected. The following values are permitted
for the TRU structure component pu (position unit).

BORLAND DELPHI: procedure ctru(var tru:TRU);
C: void ctru(struct TRU far *tru);
VISUAL BASIC: Sub ctru(DTRU As tru)
ALL LANGUAGES: The following values are permitted for the TRU structure component pu (position

unit):

Index Unit Description
0 mm Millimeter
1 inch Inch
2 m Meter
3 rev Revolution
4 deg Degree
5 rad Radiant
6 counts Counts
7 steps Steps

The following values are permitted for the TRU structure component tu (time unit):

Index Unit Description
0 sec Seconds
1 min Minutes
2 tsample Sampling time

NOTE: The default value for pu and tu is 0. This means that for all distance particulars the
unit [mm] is assumed, for velocities the unit [mm/s] and for accelerations the unit
[mm/s²]. The units selected are utilized only for interpolation commands (all move
commands)! If the commands involved are axis-specific motion commands (all jog
commands), the axis units specified in mcfg.exe are taken into account. The units
selected are also decisive for any SAP program running in parallel. In the
rw_SymPas programming environment, these parameters are accessed via the
system parameters PU and TU (Table 32).

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.12 getEnvStr, get Environment String

DESCRIPTION: With this command the environment variable, which is specified in the string or sign
parameter, is read out from the control and the value is entered into the calling
parameter.

BORLAND DELPHI: function getEnvStr (var EnvStr:CppString):integer;
C: int getEnvStr (char far * EnvStr);
VISUAL BASIC: Function getEnvStr (ByVal EnvStr As String) As Long
RETURN VALUE: The function can return the following values:

Return
value

Errror description

-1 Error: RWMOS does not supply the function, for example.
-4 Error: time-out, reason unknown, communication with the

motion control board is interrupted
0 The parameter was not found or is an empty string
> 0 Indicates the string lenth of the found string (without

concluding zero byte).
So this means that a return value >= 0 indicates the successful execution of the
command.

NOTE: With this function an application program can check the availabilty of environment
variables that are significantly important for the application. In this way an
application can react even then controlled, if for example because of a hardware
change important characteristics of the control are not available anymore.
Th writing of environment variables is only possible with unbooted system in
fwsetup
This function firstly is available in RWMOS.ELF from V2.5.3.37 on and in mcug3.dll
from V2.5.3.25 on.
In mcug3.pas, the data type CppString for Delphi is defined according to the
version.

DELPHI SAMPLE: EnvString : CppString;
.....
 EnvString := allocmem (1024);
 StrPCopy (EnvString, 'SerialNumber');
 getEnvStr (EnvString);

34 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.13 gettskinfo, Get Task Informations

DESCRIPTION: With this command a task can be asked if there is still a string that is not already
read out.

BORLAND DELPHI: function gettskinfo (TaskNr: integer; var tskinfo: integer): integer;
C: int gettskinfo (int TaskNr, int *tskinfo);
VISUAL BASIC: Function gettskinfo (ByVal tasknr As Long, tskinfo As Long) As Long
Parameter: TaskNr: Task number (0..3)

tskinfo: In this variable, the function value is returned.
Return value: 0 for success

-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: This function is returned in tskinfo. Bit 0 indicates that there is a not already
completed string (write). Bit 1 indicates that there is a completed string (writeln).
The respecting bits are reset automatically by reading the string by gettskstr().
Task message strings can be generated in the programming environment of the
stand-alone tasks by WRITE or WRITELN (chapter 6.6.78 and 6.6.79).

4.4.14 gettskstr, Get Task Message String

DESCRIPTION: With this command the task specific output string can be read.
BORLAND DELPHI: function gettskstr (TaskNr: integer; buffer: PChar, szbuffer: integer): integer;
C: int gettskstr (int TaskNr, char * buffer, int szbuffer);
VISUAL BASIC: Function gettskstr (ByVal tasknr As Long, ByVal buffer As String, ByVal szbuffer)

As Long
Parameter: TaskNr: Task number (0..3)

buffer: In this variable, the read string is returned.
szbuffer: Max. size of the string to be read.

Return value: Number of the read signs
NOTE: This call resets the respecting status bits in tskinfo. The storage section of TskStr

must be sufficient in order to store the returned string. Max. 512 bytes will be
returned.
Task Message Strings can be generated in the programming environment of the
stand-alone tasks by WRITE or WRITELN (chapters 6.6.78 and 6.6.79).

4.4.15 InitMcuErrorReport, initialisation error report

DESCRIPTION: This functions explains in plaintext the error return values of the functions
InitMcuSystem(), InitMcuSystem2() and InitMcuSystem3() described below.
A message box displays it on the screen. The user has then to close it.

BORLAND DELPHI: procedure InitMcuErrorReport(error:integer);
C: void InitMcuErrorReport (int error);
VISUAL BASIC: Sub InitMcuErrorReport (ByVal error As Long)
NOTE: PCAP command InitMcuSystem(), InitMcuSystem2() and InitMcuSystem3()
EXAMPLE: initerror = InitMcuSystem3(...); // Start initialisation

InitMcuErrorReport(initerror); // In case of error, display error return value

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.16 InitMcuSystem, initialise mcu system

DESCRIPTION: This function performs the complete software initialization for the drive system. The
function call should be executed at the beginning of every PCAP application
program at any case before any other PCAP calls. Inside this function, various
PCAP basic functions are called. This includes initialization of the axis numbers
{an} in the tsrp structure. If the system.dat system file has not yet been transferred
onto the APCI-800x board, this will be done here. At the end of the function, the
axis parameters of all axes are read into the tsrp structure.

BORLAND DELPHI: function InitMcuSystem(var tsrp:TSRP):integer;
C: int InitMcuSystem(var TSRP far *tsrp);
VISUAL BASIC: Function InitMcuSystem(DTSRP As TSRP) As Long
NOTE: PCAP commands txbf2(), mcuinit(), structure/record type ROSI

Important: This function has been written to be compliant with the PA 8000.
You should use instead the functions InitMcuSystem2() or rather InitMcuSystem3().

RETURN VALUE: The function can return the following values:

Return value Error description
0 No error
31 No APCI-800x controller found
32 The rw_MOS operating software has not been loaded or has

been stopped. See PCAP command BootFile() or service
program mcfg.exe

33 Wrong operating system software. The file versions of the

mcug3.dll and rwmos.elf files have incompliant revision states
and do not match.

34 The device driver rnwmc.sys (Windows NT 4.0, 2000) or
rnwmc.vxd (Windows 95/98/Me) cannot be opened.

35 Error while mapping the physical APCI-800x board memory.
36 Error while mapping in the physical APCI-800x board memory.
37 Error while mapping out the physical APCI-800x board

memory.
38 APCI-800x board cannot be accessed
39 APCI-800x board mail-box-interface cannot be accessed
lderr Error return value from PCAP command txbf()

4.4.17 InitMcuSystem2, initialise mcu system (2nd method)

DESCRIPTION: This function is identical to the InitMcuSystem(), except that the parameters
SystemFileName and TpuBaseAddress are specified. SystemFileName contains
the file name of the system file (usually system.dat) as well as path and drive
information.

BORLAND DELPHI: function InitMcuSystem2(var tsrp:TSRP; TpuBaseAddress: integer, var
SystemFileName: string):integer;

C: int InitMcuSystem2(struct TSRP *tsrp, int TpuBaseAddress, char
*SystemFileName)

VISUAL BASIC: Function InitMcuSystem2(DTSRP As TSRP, ByVal TpuBaseAddress As Long,
ByVal filename As String) As Long

RETURN VALUE: The function has the same return values as the function InitMcuSystem() txbf2
implicitly called up.

NOTE: See InitMcuSystem(),
TpuBaseAddress has no meaning and is to be transferred with the value 0.

36 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.18 InitMcuSystem3, initialise mcu system (3rd method)

DESCRIPTION: This function is identical to InitMcuSystem(), except that the parameters
SystemFileName, rosi, TpuBaseAddress and BoardType are specified.
SystemFileName contains the file name of the system file (usually system.dat) as
well as path and drive information.

BORLAND DELPHI: function InitMcuSystem3(var tsrp:TSRP; var rosi:ROSI, TpuBaseAddress: integer,
var SystemFileName: string; var BoardType: integer):integer;

C: int InitMcuSystem3(struct TSRP *tsrp, struct ROSI *rosi, int TpuBaseAddress, char
*SystemFileName, int *BoardType)

VISUAL BASIC: Function InitMcuSystem3(DTSRP As TSRP, DROSI As ROSI, ByVal
TpuBaseAddress As Long, ByVal filename As String, BoardType As Long) As Long

RETURN VALUE: The function has the same return values as the function InitMcuSystem(). Further
return values can returned by the function txbf2 implicitly called up. The structure
rosi is updated according to the system information returned by the control.
The value BoardType informs about the control type. BoardType can contain the
following values:
1 = PA 8000 (ISA board)
2 = PS 840 (ISA board)
4 = APCI-8001
32 (20 hex) = APCI-8008
0 = unknown board or old RWMOS
other values = more recent products

NOTE: See InitMcuSystem()
TpuBaseAddress has no meaning and is to be transferred with the value 0.
As the initialisation function has currently the highest priority, the use of this
function is recommended.

4.4.19 ja, jog absolute

DESCRIPTION: The axis channels selected in AS are moved absolutely to the target positions
specified in TSRP[n].tp using a trapezoidal speed profile. The profile is generated
using the axis-specific system parameters jac (jog acceleration), jvl (jog-velocity)
and jtvl (jog target velocity). You can set and interrogate these parameters at any
time using write and read commands. The default values are specified in the
mcfg.exe utility program. The trajectory parameters are stated in the axis-specific
units (distance, time) specified in mcfg.exe.

BORLAND DELPHI: procedure ja(var as:AS; var tsrp:TSRP);
C: void ja(struct AS far *as, struct TSRP far *tsrp);
VISUAL BASIC: Sub ja(DASEL As ASEL, DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp

n = 0 .. Number of axes present-1
NOTE: If this command is executed simultaneously for more than one axis, these may

(due to the axis-specific system parameters) reach the target positions at different
points in time (see chapter 2.2.7)
You can set and interrogate the axis-specific parameters like accelerations and
velocities at any time using write and read commands. They are not transferred
automatically with ja.
Important: By calling out the function ja the element 0 of the global data structure
TSRP must be entered, as ja() takes the index of the used TSRP structure
elements from the AS structure entnimmt.

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.20 jhi, jog home index

DESCRIPTION:

This command starts the index search run for all the axis channels selected in AS.
The search run is terminated either when the index (zero track) signal of the
incremental encoder is activated or after the distance or angle particular specified
in tp has been exceeded. The search run is carried out using a trapezoidal speed
profile. The parameters for the profile generator are the system data hac and hvl,
which can be set using mcfg.exe or the appropriate write commands. When the
index signal (zero track) is detected, the motor is decelerated with the deceleration
hac to velocity 0. The tp parameter is stated as a relative traverse distance in the
axis-specific position unit. The search direction is determined by the sign of tp.
Generally, the axis system is first run in relation to a reference switch (cam). To
eliminate the mechanical inaccuracy of this cam, the obvious solution is to perform
the index search run afterwards.
The command can be executed with the aid of the profile end flag (PE) in the axst
register and the state of the index signal interrogated with the digi register (Chapter
4.4.52.1). The profile end flag remains set to 0 until the end of the search run.

BORLAND DELPHI: procedure jhi(var as:AS; var tsrp:TSRP);
C: void jhi(struct AS far *as, struct TSRP far *tsrp);
VISUAL BASIC: Sub jhi(DASEL As ASEL, TSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp

n = 0 .. Number of axes present -1
NOTE: To maximize the accuracy of index positioning, the search run should be executed

with as small a traversing velocity as possible. You do, however, also have an
option for performing the search run in two steps. In the first of these steps, the
search run can be started in a positive traversing direction, for example, at a
relatively high search speed. In the second step, the search run is then concluded
in the negative direction at a low search speed. The search speed can be read and
written with the PCAP commands rdhvl() and wrhvl().
Important: By calling out the function jhi() the element 0 of TSRP must be entered,
as jhi() takes the index of the used TSRP structure elements from the AS structure
entnimmt.

4.4.21 jhl, jog home left

DESCRIPTION: This command starts the reference search run for all axis channels specified in AS,
in a negative traversing direction. The search run is executed with the aid of an
endless trapezoidal speed profile. The axis-specific system data hac and hvl here
serve as parameters for profile generation. If a digital input of the APCI-800x board
planned with REF function is activated at the axis channel selected, the search run
will be terminated by decelerating (with hac) the axis to a velocity of 0. This state
can be interrogated in the axst register with the aid of the pe profile flag. The profile
flag remains set to 0 until the end of the search run.

BORLAND DELPHI: procedure jhl(var as:AS);
C: void jhl(struct AS far *as);
VISUAL BASIC: Sub jhl(DASEL As ASEL)

38 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.22 jhr, jog home right

DESCRIPTION: This command functions in an identical way to the PCAP command jhl(), except
that the search run is started in the positive traversing direction.

BORLAND DELPHI: procedure jhr(var as:AS);
C: void jhr(struct AS far *as);
VISUAL BASIC: Sub jhr(DASEL As ASEL)

4.4.23 jr, jog relative

DESCRIPTION: This command is identical to the PCAP command ja(), except that the distance
particular tp is a relative (incremental) traverse distance. Starting from the
instantaneous position, the motor is moved by the specified distance (or angle) to
the left (negative values) or the right (positive values).

BORLAND DELPHI: procedure jr(var as: AS; var tsrp:TSRP);
C: void jr(struct AS far *as, struct TSRP far *tsrp);
VISUAL BASIC: Sub jr(DASEL As ASEL, DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp

n = 0 .. number of existing axes-1
NOTE: By calling out the function jr the element 0 of TSRP must be entered, as jr() takes

the index of the used TSRP structure elements from the AS structure entnimmt.

4.4.24 js, jog stop

DESCRIPTION: The axis channels - selected in AS - are decelerated with the axis-specific
time-delay sdec to velocity 0 and hold in position control. Until the end of
deceleration the pe flag is reset in the axst register. You can set and interrogate the
time-delay sdec at any time using write and read commands. The default value is
specified in the mcfg.exe utility program.

BORLAND DELPHI: procedure js(var as: AS);
C: void js(struct AS far *as);
VISUAL BASIC: Sub js(DASEL As ASEL)
NOTE: If this command is executed simultaneously for more than one axis, these may

(due to the axis-specific system parameters) reach the target positions at different
points in time [Chapter 2.2.7]. The value sdec = 0 forces an immediate axis stop
without braking ramp.

4.4.25 lpr – Latch Position Registers

DESCRIPTION: This command can start the recording of the graphical system analysis for one
axis.

BORLAND DELPHI: procedure lpr (var latch_infos: LATCH_INFOS);
C: void lpr (struct LATCH_INFOS *latch_infos);
VISUAL BASIC: Sub lpr (DLATCH_INFOS As LATCH_INFOS)
RETURN VALUE: None
EFFECT: After the command lprs has been executed the recording of the graphcal system

analyse is started. The recording parameters are given in latch_infos.
NOTE: See also command lprs and grafical system analyse in mcfg

Important: The data structure latch_infos must be aligned in 4 bytes.

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.26 lprs – Latch Position Registers Synchronous

DESCRIPTION: This command can start the recording of the graphical system analysis
synchronously for one or several axes.

BORLAND DELPHI: procedure lprs (var as: AS; var latch_infos: LATCH_INFOS);
C: void lprs (struct AS *as, struct LATCH_INFOS *latch_infos);
VISUAL BASIC: Sub lprs (DASEL As ASEL, DLATCH_INFOS As LATCH_INFOS)
RETURN VALUE: None
EFFECT: After the command lprs has been executed the recording of the graphcal system

analyse is started. The recording parameters are given in latch_infos. The element
san of the data structure latch_infos has no significance with this command as the
axes are specified in as.

NOTE: See also command lpr and grafical system analyse in mcfg
Important: The data structure latch_infos must be aligned in 4 bytes.

4.4.27 lps, latch position synchronous
DESCRIPTION: This command can be used to initiate a latch routine synchronized with the scan

cycle of the axis channel selected in an. After call-up, the actual position {rp} is put
into intermediate storage after every mst scan intervals. If a latch procedure has
taken place, this will be displayed in the axst register in the lpsf flag (Bit No. 16).
The PCAP read command rdlp() or the lp SAP axis qualifier can be used to read
out the position from intermediate storage. Readout will also erase the lpsf flag in
the axst register.

BORLAND DELPHI: procedure lps(an: integer; mst: integer);
C: void lps(int an, int mst);
VISUAL BASIC: Sub lps(ByVal an As Long, ByVal mst As Long)
NOTE: The command is primarily used when recording contours and teach-in applications,

since it enables position data in real time to be recorded from one or more axes.
Typical values for mst are 10 ... 100 scan intervals (-> 12.8 ms ... 128.0 ms). The
precise value will, however, depend on the processing speed of the application
concerned.

40 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.28 mca, move circular absolute - smca, spool motion circular absolute
DESCRIPTION: This command causes circular interpolation of the first two axis channels specified

in AS. There are no restrictions regarding axis selection. Circular interpolation is
carried out on the basis of a trapezoidal speed profile, i.e. taking into account
maximum acceleration and maximum velocity. The structure/record components
specified in CMP are utilized as interpolation parameters. These are the trajectory
acceleration ac, the trajectory velocity vl and the trajectory target velocity tvl. The
coordinates entered in dtca1 and dtca2 specify the circle's centre in an absolute
system of units. Note that dtca1 is assigned to the first axis programmed in AS and
dtca2 to the second axis specified in AS. The units for the trajectory parameters
are selected with the PCAP command ctru().
The angle phi specifies the traverse angle to be run with the unit degrees. The
sense of rotation is specified by the sign of the angle variable. Positive values
signify anti-clockwise rotation and negative values signify clockwise rotation. The
traverse angle range is not fixed to defined limits, i.e. part or multiple circles can be
run as well.

BORLAND DELPHI: procedure mca(var as: AS; var cmp: CMP);
procedure smca(var as: AS; var cmp: CMP);

C: void mca(struct AS far *as, struct CMP far *cmp);
void smca(struct AS far *as, struct CMP far *cmp);

VISUAL BASIC: Sub mca(DASEL As ASEL, CMP As CMP)
Sub smca(DASEL As ASEL, CMP As CMP)

NOTE: Chapter 2.3 Interpolation with the APCI-800x.

4.4.29 mcr, move circular relative - smcr, spool motion circular relative

DESCRIPTION: This command is identical to the PCAP command mca(), except that the
coordinates specified in dtca1 and dtca2 are incrementally (or relatively)
referenced to the current motor position.

BORLAND DELPHI: procedure mcr(var as: AS; var cmp: CMP);
procedure smcr(var as: AS; var cmp: CMP);

C: void mcr(struct AS far *as, struct CMP far *cmp);
void smcr(struct AS far *as, struct CMP far *cmp);

VISUAL BASIC: Sub mcr(DASEL As ASEL, CMP As CMP)
NOTE: Chapter 2.3 Interpolation with the APCI-800x.

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.30 mca3d, move circular absolute three dimensional -
smca3d, spool motion circular absolute three dimensional

DESCRIPTION: This function is used to carry out the circular interpolation of the 3 specified axis
channels. There are not restrictions regarding axis selection. Circular interpolation
is carried out on the basis of a trapezoidal speed profile, i.e. considering the
maximum acceleration and maximum velocity. The trajectory acceleration ac, the
trajectory velocity vl and the trajectory target velocity tvl are used as interpolation
parameters in hmp3d. The coordinates entered in dtca1, dtca2 and dtca3 specify
the circle's center in absolute measurement system. Note that dtca1 is assigned to
the first axis programmed in AS, dtca2 to the second axis and dtca3 to the third
axis. The units of the trajectory parameters are selected with PCAP command
ctru().
The circle can be traversed in any wished level, which is specified in the surface
normal in PN1, PN2 and PN3. The current start coordinates always remain in the
given level.
The angle phi specifies the traverse angle to be run with the unit Degree. The
sense of rotation is determined by the sign of the angle variable. Positive values
signify anti-clockwise rotation and negative values clockwise rotation. The traverse
angle range is not fixed to defined values, i.e. part or multiple circle can be runs as
well.
The data field dtm[] is not used here.

BORLAND DELPHI: procedure mca3d(var as: AS; var hmp3d: HMP3D);
procedure smca3d(var as: AS; var hmp3d: HMP3D);

C: void mca3d(struct AS far *as, struct HMP3D far *hmp3d);
void smca3d(struct AS far *as, struct HMP3D far *hmp3d);

VISUAL BASIC: Sub mca3d(DASEL As ASEL, HMP3D As HMP3D)
Sub smca3d(DASEL As ASEL, HMP3D As HMP3D)

NOTE: Chapter 2.3 Interpolation with the APCI-800x.

4.4.31 mcr3d, move circular relative three dimensional -
smcr3d, spool motion circular relative three dimensional

DESCRIPTION: This function is identical to the PCAP command mca3d() except that the
coordinates specified in dtca1, dtca2 and dtca3 are incrementally or relatively
referenced to the instantaneous motor positions.

BORLAND DELPHI: procedure mcr3d(var as: AS; var hmp3d: HMP3D);
procedure smcr3d(var as: AS; var hmp3d: HMP3D);

C: void mcr3d(struct AS far *as, struct HMP3D far *hmp3d);
void smcr3d(struct AS far *as, struct HMP3D far *hmp3d);

VISUAL BASIC: Sub mcr3d(DASEL As ASEL, HMP3D As HMP3D)
Sub smcr3d(DASEL As ASEL, HMP3D As HMP3D)

NOTE: Chapter 2.3 Interpolation with the APCI-800x.

42 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.32 mcuinit, motion control unit initialisation

DESCRIPTION: This function is used to carry out various initialization routines inside the system
driver mcug3.dll. It checks whether communication is possible between PC and
APCI-800x board. If this is the case, the rw_MOS-specific system data returned by
the APCI-800x board are entered in the structure/record ROSI, which can then be
used to check the rw_MOS-specific system information for validity.
 If it has not proved possible to establish communication to the APCI-800x,
the entire TOSI structure will have the value 0

BORLAND DELPHI: procedure mcuinit(var rosi:ROSI);
C: void mcuinit(struct ROSI far *rosi);
VISUAL BASIC: Sub mcuinit(DROSI As ROSI)
NOTE: This command does not trigger a reset on the APCI-800x board. This must be

carried out with the PCAP commands ra() or rs().
You can use the ROSI.sysfile_loaded return value to ascertain whether the
system.dat system file has already been transferred to the APCI-800x board with
the aid of the PCAP load command txbf2(). If this value is 0, then after a successful
mcuinit() PCAP command the PCAP command txbf2() must be executed, so that
you can work with the APCI-800x board.
The PCAP example programs provided include this command in the
InitMcuSystem(), InitMcuSystem2() and InitMcuSystem3() functions, where the
monitoring mechanism for system initialization is once more illustrated.
Important: mcuinit() is compatible with the PA 8000 and PS840 controllers and
should be replaced by the InitMcuSystem3() command. You can use this command
only to check if the motion control board is still online.

4.4.33 MCUG3_SetBoardIntRoutine

DESCRIPTION: With this function a user specific interrupt processing routine can be installed and
activated.

BORLAND DELPHI: function MCUG3_SetBoardIntRoutine (func : Pointer): integer;
C: int MCUG3_SetBoardIntRoutine(InterruptRoutine func);
VISUAL BASIC: Function MCUG3_SetBoardIntRoutine (ByVal func As Long) As Long
PARAMETER: func is a function pointer onto the interrupt processing routine that was written by

the user.
It is declared (in C++) e.g. in the following manner:
void CALLBACK EventHandler(int IRQLineBits) {}

RETURN VALUE: No meaning
NOTE: Within the interrrupt processing routine the programming conventions of the

Window operating system have to be observed. So, it is not allowed to generate
window objects in a callback-handler.
For Visual Basic 6.0 the additional module „MCUG3Interrupt.BAS“ is contained in
the scope of delivery for the use of this function

4.4.34 MCUG3_ResetBoardIntRoutine

DESCRIPTION: With this function a previously enabled user specific interrupt processing routine
can be disabled.

BORLAND DELPHI: function MCUG3_ResetBoardIntRoutine (): integer;
C: int MCUG3_ResetBoardIntRoutine(void);
VISUAL BASIC: Function MCUG3_ResetBoardIntRoutine () As Long
NOTE: Before quitting the application the currently installed interrupt service routine must

be desinstalled.

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.35 mha, move helical absolute - smha, spool motion helical absolute

DESCRIPTION: This command is used to perform a helical interpolation; it is an extension of
circular interpolation. This is why the particulars given for the PCAP command
mca() also apply to this command, except that the trajectory parameters are
entered in the structure/record HMP. For additional axes specified in AS, the dtm
parameter can be programmed as well. These are the absolute target positions for
additional axes. While the first two axes perform a circular interpolation, the other
ones execute a linear movement. All axes reach their target positions at the same
moment.
Unlike the circular interpolation the circle target point can be defined per target
position instead through the circle angle. This case must be displayed by the user
with a traverse angle value ≤ 1e-100. The angle sign indicates the traverse
direction.
The required circle target point are defined in this case in dtm [0] and dtm[1] of
HMP.
In case the given target point is not located on the circle which results from the
start point and the middle point, the target position is corrected.

BORLAND DELPHI: procedure mha(var as: AS; var hmp: HMP);
procedure smca(var as: AS; var hmp: HMP);

C: void mha(struct AS far *as, struct HMP far *hmp);
void smha(struct AS far *as, struct HMP far *hmp);

VISUAL BASIC: Sub mha(DASEL As ASEL, HMP As HMP)
Sub smha(DASEL As ASEL, HMP As HMP)

4.4.36 mhr, move helical relative - smhr, spool motion helical relative

DESCRIPTION: This command is identical to the PCAP command mha(), except that the distance
particulars programmed in dtca1, dtca2 and dtma3 are referenced to the
instantaneous motor position incrementally (or relatively).

BORLAND DELPHI: procedure mhr(var as: AS; var hmp: HMP);
procedure smhr(var as: AS; var hmp: HMP);

C: void mhr(struct AS far *as, struct HMP far *hmp);
void smhr(struct AS far *as, struct HMP far *hmp);

VISUAL BASIC: Sub mhr(DASEL As ASEL, HMP As HMP)
Sub smhr(DASEL As ASEL, HMP As HMP)

44 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.37 mla, move linear absolute - smla, spool motion linear absolute

DESCRIPTION: This command is used to carry out a linear interpolation with absolute target
particulars. All axes in n-dimensional space are permitted for interpolation. You
specify in AS which axes you want to participate in interpolation. You use LMP to
specify the trajectory acceleration ac, the trajectory velocity vl and the trajectory
target velocity tvl for linear interpolation. The units for the trajectory parameters are
selected with the ctru() command.
Depending on the number of axes involved (unoa), you enter the axes you want in
the san field and the corresponding traverse distances in the dtm field. Note that
the traverse distance in the dtm[n] field is assigned to the axis number n + 1. The
interpolation is referenced to the axes entered in AS. The traverse distances are
interpreted as absolute distance or angle information, i.e. referenced to the
machine zero.

BORLAND DELPHI: procedure mla(var as: AS; var lmp: LMP);
procedure smla(var as: AS; var lmp: LMP);

C: void mla(struct AS far *as, struct LMP far *lmp);
void smla(struct AS far *as, struct LMP far *lmp);

VISUAL BASIC: Sub mla(DASEL As ASEL, lmp As lmp)
Sub smla(DASEL As ASEL, lmp As lmp)

NOTE: Chapter 2.3 Interpolation with the APCI-800x.

4.4.38 mlr, move linear relative - smlr, spool motion linear relative

DESCRIPTION: This command is identical to the PCAP command mla(), except that the traverse
distances specified in the dtm field are interpreted incrementally or relatively to the
instantaneous motor position.

BORLAND DELPHI: procedure mlr(var as: AS; var lmp: LMP);
procedure smlr(var as: AS; var lmp: LMP);

C: void mlr(struct AS far *as, struct LMP far *lmp);
void smlr(struct AS far *as, struct LMP far *lmp);

VISUAL BASIC: Sub mlr(DASEL As ASEL, lmp As lmp)
Sub smlr(DASEL As ASEL, lmp As lmp)

NOTE: Chapter 2.3 Interpolation with the APCI-800x.

4.4.39 ms, motion stop

DESCRIPTION: The axis channels selected in AS are decelerated with the trajectory acceleration
or axis deceleration currently valid down to zero velocity and kept in position
control mode. The pe flag in the axst register is reset by the time the deceleration
procedure has been completed. The direction vector of a perhaps currently
ongoing interpolation function is not altered by this command. If the axes selected
are currently running a circle, deceleration will be performed on the circular
trajectory with the trajectory acceleration specified.
Axes which traverse with one final velocity are decelerated down to zero velocity
with the axis-specific deceleration sdec.

BORLAND DELPHI: procedure ms(var as: AS);
C: void ms(struct AS far *as);
VISUAL BASIC: Sub ms(DASEL As ASEL)
NOTE: Axes which are not interpolating jointly may reach the target point at different points

in time.

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.40 MsgToScreen, message to screen

DESCRIPTION: This command disables or enables the screen messages of the DDL driver. If the
parameter Enable = 0 the screen messages are disabled.

BORLAND DELPHI: procedure MsgToScreen (Enable: integer);
C: void MsgToScreen (long Enable);
VISUAL BASIC: Sub MsgToScreen (ByVal Enable As Long)
NOTE: This option is important for systems without user interface. If screen messages are

enabled the system can otherwise wait for an entry which cannot be used.
This command is available from the version 3.5.2.10.

4.4.41 ol, open loop

DESCRIPTION: This command opens the position control loop of all axes selected in AS. On each
of the Motor-Command-Ports, 0 V output voltage is outputted in the case of servo
axes and 0 Hz stepping frequency in the case of stepping motor axes. All APCI-
800x digital outputs planned with PAE function are de-activated for the axis
channels programmed. Depending on the axis channels selected, the relays K2
(axis channel 1), K3 (axis channel 2) and K4 (axis channel 3) are switched off.
[CM / Chapter 5.2.10]

BORLAND DELPHI: Procedure ol(var as: AS);
C: void ol(struct AS far *as);
VISUAL BASIC: Sub ol(DASEL As ASEL)
NOTE: This command is used mainly in exceptional situations, like limit switch limitation,

position error violation, etc.

4.4.42 ra, reset axis

DESCRIPTION: This command can be used to carry out an axis-specific reset operation. This
means that any profile running will be aborted, the position control loop will be
opened, the setpoint value will be switched off, any spooler data will be rejected
and the position registers set to zero. The digital outputs are set to the default
values planned. The axis-specific override factors (PCAP commands wrjovr() and
wrtrovr()) are set to the value 1.0. Any software limits planned will no longer be
monitored for the axis channels selected in ra().

BORLAND DELPHI: Procedure ra(var as: AS);
C: void ra(struct AS far *as);
VISUAL BASIC: Sub ra(DASEL As ASEL)
NOTE: All system data, like accelerations, velocities, filter parameters, etc. remain stored

in memory and therefore need not be loaded anew. This command is mainly used
at system initialization or in exceptional situations.
Warning: PAE outputs of other axes in the same output group which could have
been set, are reset with this command.

46 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.43 rdap, read axis parameters

DESCRIPTION: This command can be used to read in all axis-specific input and output variables of
the structure and/or the TSRP record with one read command.

BORLAND DELPHI: procedure rdap(var tsrp:TSRP);
C: void rdap(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdap(DTSRP As TSRP)
TSRP COMPONENTS: all, i.e. TSRP[n].an .. TSRP[n].ifs
RETURN VALUE: Once the command has been executed, the input and output variables will be

located in the structure or record components concerned in each case, or in the
TSRP record.

NOTE: The individual structure or record components can also be interrogated, using
special read commands. Normally, these read commands are preferred due to the
shorter access time involved.

4.4.44 rdaux, read auxiliary register

DESCRIPTION: The function returns the axis-specific auxiliary register. [Chapter 6.3.3]
BORLAND DELPHI: procedure rdaux (var tsrp:TSRP);
C: void rdaux (struct TSRP *tsrp);
VISUAL BASIC: Sub rdaux(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].aux
NOTE: See also chapter 4.4.133

4.4.45 rdaxst, read axis status

DESCRIPTION: This command can be used to interrogate various axis-specific status and error
flags of the ramp and interpolation task. Normally this command is repeated
cyclically in the PCAP program, in order to check by means of the pe flag
described below whether the traversing commands of the axes involved have been
completely processed. In addition, this command causes a series of error flags in
the axst register to be updated. These should likewise be evaluated cyclically, to
guarantee reliable operating behaviour of the PCAP program.

BORLAND DELPHI: procedure rdaxst(var tsrp:TSRP);
C: void rdaxst(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdaxst(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].axst
RETURN VALUE: After this command has been executed, the bit-coded return value is located in the

structure/record component axst, with the structure described in the table below.

PM / PROGRAMMING AND REFERENCE MANUAL

Table 12: Bit-decoded structure of the axst word
Bit No. Name Function
0
0000 0001

- Not assigned, this flag has an undefined value.

1
0000 0002

eo Emergency-Out Error-Flag: Has the value 1, when a digital input as EO planned is
active.

2
0000 0004

dnr Drive-Not-Ready error-flag: Has the value 1, when a digital input (as DR-planned) is
inactive.

3
0000 0008

lslh Limit-Switch Left Hardware error-flag: Has the value 1, when a digital input
(as LSL_SMD, LSL_TOM or LSL_SMA planned) is active.

4
0000 0010

lsrh Limit-Switch Right Hardware error-flag: Has the value 1, when a digital input
(as LSL_SMD, LSR_TOM or LSR_SMA planned) is active.

5

0000 0020

lsls Limit-Switch left software error-flag: Has the value 1, when the left software limit is
exceeded. The left software limit is filed in the axis-specific system parameter {sll}.
For this flag to become active, two additional conditions must be satisfied: the
software limit must be planned with one of the functions TOM or SMA and the shp()
command must heave been executed beforehand.

6

0000 0040

lsrs Limit-Switch right software error-flag: has the value 1, when the right software limit
is exceeded. The right software limit is filed in the axis-specific system parameter
{slr}. For this flag to become active, two additional conditions must be satisfied: The
software limit must be planned with one of the functions TOM or SMA and the shp()
command must heave been executed beforehand.

7

0000 0080

mpe Maximum Position error-flag: Has the value 1, when the permissible position error
has been exceeded. The maximum permitted position error is specified in system
parameter {mpe}. The PCAP commands wrmpe() and rdmpe() can be used to alter
the parameter even during run time.

8

0000 0100

dhef Data Handling error-flag: has the value 1, when a data error (e.g. inconsistent
profile data) is detected by the rw_MOS operating system.
In certain cases, when this bit occurs, the control loops of the axis concerned in
each case are opened. The resetting of this bit is only possible by a system restart
(BootFile) or by the execution of the ra() [chapter 4.4.42] or rs() [chapter 4.4.112]
commands. If necessary, also the system variable ErrorReg must be taken into
consideration.

9

0000 0200

cef Data Configuration error-flag. The cef flag is set when the information for operating
modes, signal processing or CPU number on the APCI-800x do not agree with the
system data (system.dat). The configuration-check is carried out automatically after
the following events:
 after every reset statement (e.g. PCAP command rs())
 after every transfer of the system.dat system file with the PCAP command
 txbf2().
The cause of the error can be eliminated by saving the system data in the [Save
Changes] menu.

10..11 Not assigned, these flags always have an non-definied value .
12
0000 1000

pe Profile-End status-flag: Has the value 1, when the end of the profile has been
reached.

13
0000 2000

cl Closed-Loop status-flag: Has the value 1, when the axis channel is in position
control.

14

0000 4000

ip In-Position Status-flag: Has the value 1, when the profile end has been reached and
in addition the difference of setpoint and actual position of the axis channel is
smaller then the position differential contained in the axis-specific system parameter
{ipw}.

15
0000 8000

ui User Input status-flag: Has the value 1, when a digital input (as UI-planned) is
active.

48 PM / PROGRAMMING AND REFERENCE MANUAL

Bit No. Name Function
16

0001 0000

lpsf The Latch Position Synchronous Flag indicates that latching has occurred
synchronously to the sampling cycle [chapter 4.4.25], or that a digital input (planned
with the LP function) has been activated (MCFG / Chapter 1.7.2.5). The flag is reset
by reading the latched position LP, e.g. by the command rdlp.

17

0002 0000

reference
d

This flag indicated that the respecting axis is reduced with the command shp. The
flag is reset at booting with the commands rs(), ra() or by writing on rp.
At stepper motor axes the flag is also reset at opening and closing the control loop.
This flag is only available from RWMOS version V2.5.3.16.

18

0004 0000

refh Ref-hardware input flag: Has value 1 if a digital input projected as REF is enabled.
This flag is only available from RWMOS version V2.5.3.47.

19

0008 0000

saf Spooler-Asynchronous-Flag – indicates that the spooler of this axis in the
interpolation compound is asynchronous. The flag is reset by ResetAxis (ra) or
when the control loop is closed (cl). This flag is only available from RWMOS version
V2.5.3.88.

18..31 Not assigned, these flags always have a non-defined value and are reserved for
future use.

4.4.46 rdaxstb, read axis status bit

DESCRIPTION: This function can be used to interrogate one piece of the axis status-information of
the APCI-800x board. The axis number must be specified in the an parameter
(0, 1, ... MAXAXIS).

BORLAND DELPHI: function rdaxstb(an:integer; bitnr:integer):integer;
C: int rdaxstb(int an, int bitnr);
VISUAL BASIC: Function rdaxstb(ByVal an As Long, ByVal bitnr As Long) As Long
RETURN VALUE: The function returns the value 1 or if the corresponding input of bitnr is active.

Assignment of bitnr to the axis status information involved is described in Table 12,
but in the case of bitnr counting starts with the value 1, so that to interrogate pe, for
example, bitnr must have the value 13!

NOTE: See also PCAP command rdaxst()

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.47 rdcbcnct, read common buffer CNC-Task

DESCRIPTION: Each CNC task has a local memory area, referred to as the "Common Buffer",
which can be read and written both by the CNC task involved and by a PCAP
program.
This function can be used to read in the complete CNC-task-specific buffer (or part
of it). The function parameter cbcnct is used to select the CNC task buffer, the
read-in size in bytes and the memory address where this block is to be read in.

BORLAND DELPHI: function rdcbcnct(var cbcnct:CBCNCT):integer;
C: int rdcbcnct(struct CBCNCT far *cbcnct);
VISUAL BASIC: Sub rdcbcnct(DCBCNCT As CBCNCT)
RETURN VALUE: The function rdcbcnct() has the following bit-coded return value:

Bit
number

Return
value

Error description

0 0 No error
0 1 Invalid task number
1 0 No error
1 1 Maximum permitted buffer size exceeded.

This means that normally, the function returns the
value 0.

2 0 No error
2 1 Address error / Memory error

NOTE: The CNC-task-specific buffer size is 1,000 bytes.
The record structure of CBCNCT is to be found in chapter 4.3.2.9.
PCAP command wrcbcnct(), SAP commands RDCBx() and WRCBx()

4.4.48 rdcd, read common double

DESCRIPTION: This function can be used to read in predefined variables of the CNC task. The
variables concerned are the rw_SymPas variables CD0 to CD99. The first
parameter here specifies the number -index- of the variable you want to have read
in. The value range of index here is 0 to 999. The second parameter is a pointer to
a field with 1,000 double variables.

BORLAND DELPHI: procedure rdcd(ndx: integer; var cdbuf:CDBUF);
C: void rdcd(int ndx, struct CDBUF far *cdbuf);
VISUAL BASIC: Sub rdcd(ByVal ndx As Long, CDBUF As CDBUF)
RETURN VALUE: The rdcd() command enters the current value of the relevant CD variable in the

field specified with index.
NOTE: The content of all common variables remains stored in memory even after a

system reset operation, executed by the rs() command, for example. If you do not
want this, you should set the variables concerned to the value you want when
starting the program.
Special note: With Index 100, variables 0 to 99 are read together. The variable
with Index 100 cannot be read with rdcd.
With Index 1000, variables 0 to 999 are read together.

50 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.49 rdci, read common integer

DESCRIPTION: This command is identical to the PCAP command rdcd(), except that here it is not
values of the double type that are read in, but of the LONGINT type. The values
concerned are the rw_SymPas variables CI0 to CI999.

BORLAND DELPHI: procedure rdci(ndx: integer; var cibuf:CIBUF);
C: void rdci(int ndx, struct CIBUF far *cibuf);
VISUAL BASIC: Sub rdci(ByVal ndx As Long, CIBUF As CIBUF)
NOTE: Special note: With Index 100, variables 0 to 99 are read together. The variable

with Index 100 cannot be read with rdci.
With Index 1000, variables 0 to 999 are read together.

4.4.50 rdcncts, read computerized numeric controller task status

DESCRIPTION: This command can be used to interrogate the current status of the CNC task
selected in TaskNr (values 0..3). After this command has been executed, the
results can be found in the structure/record CNCTS.

BORLAND DELPHI: procedure rdcncts(TaskNr:integer; var cncts:CNCTS):integer;
C: void rdcncts(int TaskNr, struct CNCTS far *cncts);
VISUAL BASIC: Sub rdcncts(ByVal TaskNr As Long, CNCTS As CNCTS)
RETURN VALUE: The return values obtained in CNCTS after rdcncts() has been executed are

described in chapter 4.3.2.10.

4.4.51 rdControllerFlags, read Controller Flag register

DESCRIPTION: This command is used to read the axis-specific bit-coded ControllerFlags register
of the RWMOS operating system software.

BORLAND DELPHI: procedure rdControllerFlags (an: integer; var value: integer);
C: void rdControllerFlags (long an, long *value);
VISUAL BASIC: Sub rdControllerFlags (ByVal an As Long, value As Long)
PARAMETER: With an, the axis channel that has to be accessed is indicated (0, 1, ...).

In value, the bit-coded value of the ControllerFlags register that has to be read is
transferred.

NOTE: With the aid of flags (bits) in the axis-specific ControllerFlags register, different
options in the RWMOS.ELF control algorithm can be activated or controlled (see
also Chapters 4.4.137 and 6.3.1.4).

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.52 rddigi, read digital inputs

DESCRIPTION: This function you can be used to interrogate the following signal states:
The current status of the 16 APCI-800x digital inputs
The current status of the zero-track (index) signal from the incremental coder
An error of the measured-value-acquisition system put into intermediate storage
An edge of the zero-track (index) signal from the incremental coder put into
intermediate storage
 An edge of the hardware latch signal (strobe) put into intermediate storage. If

an input is active, this will be indicated by the bit concerned having the value
1. As an optional extra, all digital inputs in the mcfg.exe TOOLSET program
can be planned with inversion. It is likewise possible to plan the polarity you
want when an incremental coder with index signal is used.

BORLAND DELPHI: procedure rddigi(var tsrp:TSRP);
C: void rddigi(struct TSRP far *tsrp);
VISUAL BASIC: Sub rddigi(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].digi

n = 0 .. Number of axes -1
RETURN VALUE: The bit-encoded return value is located in the digi structure or record component

and is structured as described in the table printed below.
NOTE: There is no specified axis assignment for the digital inputs.

Bits 16 ... 19 can be reset by means of the rdigi() command [chapter 4.4.72].
(MCFG / Chapters 1.7.2.5 and 1.7.2.5.1).

4.4.52.1 Axis-qualifier digi

The register digi can be used to check the state of the APCI-800x digital inputs. Active inputs have the value
1 at the concerned bit position.

Table 13: Bit-coded structure of the digi word
Bit No. Function X1/Pin

APCI-8001
APCI-8008

0 Input 1 9
1 Input 2 10
2 Input 3 11
3 Input 4 12
4 Input 5 13
5 Input 6 14
6 Input 7 15
7 Input 8 16
8 Input 9 42
9 Input 10 43
10 Input 11 44
11 Input 12 45
12 Input 13 46
13 Input 14

APCI-8001/APCI-8008: hardware strobe signal for latching the actual position
(axis channel 1)

47

52 PM / PROGRAMMING AND REFERENCE MANUAL

Bit No. Function X1/Pin
APCI-8001
APCI-8008

14 Input 15
APCI-8001/APCI-8008: hardware strobe signal for latching the actual position
(axis channel 2)

48

15 Input 16
APCI-8001/APCI-8008: hardware strobe signal for latching the actual position
(axis channel 3)

49

16 Zero track of incremental encoder, axis-specific --
17 Error of the encoder data acquisition system, axis-specific --
18 Value of the zero-track signal from the incremental coder (axis-specific) put into

intermediate storage
--

19 Value of the latch signal (hardware strobe) (axis-specific) put into intermediate
storage

--

20 APCI-8008: AEA alarm error encoder channel A --
21 APCI-8008: AEB alarm error encoder channel B --
22 APCI-8008: AEN alarm error encoder channel Index --
23 APCI-8008: AES alarm error encoder group error --

4.4.53 rddigib, read digital input bit

DESCRIPTION: This function can be used to interrogate the current state of one APCI-800x digital
input and other logic signals. The axis number must be specified in the an
parameter (0, 1, ... MAXAXIS).

BORLAND DELPHI: function rddigib(an:integer; bitnr:integer):integer;
C: int rddigib(int an, int bitnr);
VISUAL BASIC: Function rddigib(ByVal an As Long, ByVal bitnr As Long) As Long
RETURN VALUE: The function returns the value 1 or TRUE, if the corresponding input of bitnr is

active.
NOTE: Bit numbers 17..20 can be reset via the rdigi() command [Chapter 4.4.72], (MCFG /

Chapters 1.7.2.5 and 1.7.2.5.1) and PCAP command rddigi()
Caution: The bit number counting begins at 1.

Table 14: Assignment of bitnr to the various APCI-800x digital inputs
‘bitnr’ Function X1/Pin

APCI-8001
APCI-8008

1 Input 1 9
2 Input 2 10
3 Input 3 11
4 Input 4 12
5 Input 5 13
6 Input 6 14
7 Input 7 15
8 Input 8 16
9 Input 9 42
10 Input 10 43
11 Input 11 44
12 Input 12 45
13 Input 13 46
14 Input 14 47
15 Input 15 48

PM / PROGRAMMING AND REFERENCE MANUAL

‘bitnr’ Function X1/Pin
APCI-8001
APCI-8008

16 Input 16 49
17 Zero track of incremental encoder, axis-specific --
18 Error of the encoder data acquisition system, axis-specific --
19 Value of the zero-track signal from the incremental coder (axis-specific) put into

intermediate storage
--

20 Value of the latch signal (hardware strobe) (axis-specific) put into intermediate
storage Strobe), axis-specific

--

21 APCI-8008: AEA alarm error encoder channel A --
22 APCI-8008: AEB alarm error encoder channel B --
23 APCI-8008: AEN alarm error encoder channel Index --
24 APCI-8008: AES alarm error encoder group error --
21..32 The flags that are not assigned depending on the control type have an undefined

value and are reserved for future use.
--

4.4.54 rddigo, read digital outputs

DESCRIPTION: This command is used to read the current output status of the APCI-800x digital
outputs into the axis-specific structure/record component digo. The bits set there
represent outputs set.

BORLAND DELPHI: procedure rddigo(var tsrp:TSRP);
C: void rddigo(struct TSRP far *tsrp);
VISUAL BASIC: TSRP[n].digo
TSRP COMPONENTS: Sub rddigo(DTSRP As TSRP)
RETURN VALUE: After this command has been executed the bit-coded return values are located in

the structure/record component digo. This component has the structure/record
defined in the PCAP-command wrdigo().

4.4.55 rddigob, read digital output bit

DESCRIPTION: This function can be used to interrogate the current state of one APCI-800x digital
output. The axis number must be specified in parameter an (0, 1, ... MAXAXIS-1).

BORLAND DELPHI: function rddigob(an:integer; bitnr:integer):integer;
C: int rddigob(int an, int bitnr);
VISUAL BASIC: Function rddigob(ByVal an As Long, ByVal bitnr As Long) As Long
RETURN VALUE: This function returns the value 1 or TRUE, if the corresponding output of bitnr is

active. Assignment of bitnr to the outputs involved is shown in the PCAP command
wrdigob().

54 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.56 rddp, read desired position

DESCRIPTION: The APCI-800x profile generator computes an internal reference variable, referred
to as the "setpoint position" (= desired position). This can be read in with this
command. Normally, in the position control operating mode, the actual position
[[chapter 4.4.95 - rdrp()])] and this setpoint position must be identical, apart from
tolerable deviations.

BORLAND DELPHI: procedure rddp(var tsrp:TSRP);
C: void rddp(struct TSRP far *tsrp);
VISUAL BASIC: Sub rddp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].dp
RETURN VALUE: After the command has been executed, the setpoint position is available in the dp

field. The value is returned in the axis-specific position unit.
NOTE: This setpoint position is also utilized for setpoint/actual-differential formation, for the

automatic position error monitoring function.

4.4.57 rddpoffset, read desired position offset

DESCRIPTION: With this function the currently programmed value of the axis qualifier dpoffset can
be read.

BORLAND DELPHI: function rddpoffset (an: integer; var value: double): integer;
C: int rddpoffset(int an, double *value);
VISUAL BASIC: Function rddpoffset (ByVal an As Long, value As Double) As Long
PARAMETER: With an, the axis channel which has to be read out is indicated (0, 1, ...).

In value, the positon offset which has to be written is returned in the axis-specific
position unit.

RETURN VALUE: 0 for success
-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE See also chapter 4.4.141

4.4.58 rddpd – read desired position in display unit

DESCRIPTION: The APCI-800x profile generator computes an internal reference variable, referred
to as the “setpoint position" (= desired position). This can be read with this
command in the axis-specific display unit.

BORLAND DELPHI: procedure rddpd(var tsrp:TSRP);
C: void rddpd(struct TSRP far *tsrp);
VISUAL BASIC: Sub rddpd(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].dp
RETURN VALUE: None
EFFECT: After the command has been executed, the setpoint position is available in the dp

field. The value is returned in the axis-specific position unit.
NOTE: See also commands rddp, rdrp, rdrpd

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.59 rddv, read desired velocity

DESCRIPTION: This function returns the axis-specific setpoint velocity of the APCI-800x profile
generator. In best case the value read in corresponds to the real axis velocity
(actual velocity).

BORLAND DELPHI: procedure rddv(var tsrp:TSRP);
C: void rddv(struct TSRP far *tsrp);
VISUAL BASIC: Sub rddv(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].dv
RETURN VALUE: After the command has been executed, the setpoint velocity is available in the dv

register with the axis-specific velocity unit.
NOTE: The setpoint velocity can only be influenced by corresponding traversing

commands.

4.4.60 rddvoffset, read desired velocity offset

DESCRIPTION: With this function, the currently programmed value of the axis qualifier dvoffset can
be read.

BORLAND DELPHI: function rddvoffset (an: integer; var value: double): integer;
C: int rddvoffset(int an, double *value);
VISUAL BASIC: Function rddvoffset (ByVal an As Long, value As Double) As Long
PARAMETER: With an, the axis channel which has to be read out is indicated (0, 1, ...).

In value, the currently set velocity value is returned in the axis-specific position unit.
RETURN VALUE: 0 for success

-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: For this, also see Chapter 4.4.142

4.4.61 rdEffRadius – Read Effective Radius

DESCRIPTION: The effective radius can be read with this command for a rotatory axis (see chapter
0).

BORLAND DELPHI: rdEffRadius (an: integer; var value: double);
C: void rdEffRadius (long an, double *value);
VISUAL BASIC: Sub rdEffRadius (an As Long, ByVal value As Double)
PARAMETER: The axis number is indicated in an. The effective radius is returned in value in the

unit defined through PU.
RETURN VALUE: None
NOTE: see chapter 6.3.3

56 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.62 rdepc, read EEPROM programming cycle

DESCRIPTION: This function can be used to read the instantaneous number of APCI-800x
EEPROM programming cycles. The cycle number is increased by one in the
EEPROM for every save operation in the TOOLSET program mcfg.exe. The
EEPROM can be written at least 10,000 times.

BORLAND DELPHI: Procedure rdepc(var tsrp:TSRP);
C: void rdepc(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdepc(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].epc
RETURN VALUE: After this command has been executed, the current programming cycle number is

in the structure/record component epc.

4.4.63 rdErrorReg, read Error Register

DESCRIPTION: This function can be used ro read the Error Register for the RWMOS operating
system software.

BORLAND DELPHI: procedure rdErrorReg(var ErrorReg: integer);
C: void rdErrorReg (long *ErrorReg);
VISUAL BASIC: Sub rdErrorReg (ErrorReg As Integer)
RETURN VALUE: The bit-coded value of the Error Register is returned in ErrorReg.

The function has no return value.
NOTE: For the layout of the Error Register, see next chapter.

4.4.63.1 Register ErrorReg

The ErrorReg register displays various error states of the RWMOS operating system software. The register
is bit-coded.

Table 15: Bit-coded construction of the ErroReg word
Bit No. Name Function Hex
0 errAxDef Axis in AS was selected more than once in a positioning command 1
1 errTargetVel Target velocity <> 0 at spooler end, although ForbidTargetVel set:

System has been reset
2

2 errUnit An invalid unit was used 4
3 errCenterPoint Invalid center point programmed for circle or a circle with a radius = 0 has

been programmed
8

4 errSpooler
Overrun

Spooler overrun detected for an axis 10

5 ProfileToSmall In spooler operation, at least two traverse profiles whose execution time is
shorter than the scan time are executed consecutively. This may cause
errors in the program flow and is not allowed.

20

6 SplineSizeErr Too many spline sets loaded 40
7 RotationFail Error in axis rotation 80
8 PciBusError Error detected in Interrupt Cause Register of PCI bridge 100
9 CheckMonitor

Screen
Incorrect output to Monitor Screen generated 200

10 SsfWait
Refused

At least one SSF wait command was ignored, because the target velocity
of the previous traversing command did not equal 0.
This suggests a programming error in the user software!

400

11 SpoolerLoad
Error

Error while writing on the spooler, as at the same time, a positioning
profile was generated by the system. This may happen if, for example, a
limit switch switches during the call of an interpolation command.

800

PM / PROGRAMMING AND REFERENCE MANUAL

Bit No. Name Function Hex
12 VelocityZero This bit indicates that an interpolation command with a traversing velocity

= 0 was detected. Depending on the bit InhibitProfileRefuse (register
MODEREG Chapter 6.3.1.5), the profile is automatically rejected.
This suggests a programming error in the user software or a configuration
problem of the user!

1000

13 AccelZero This bit indicates that an interpolation command with an acceleration = 0
was detected. Depending on the bit InhibitProfileRefuse (register
MODEREG Chapter 6.3.1.5), the profile is automatically rejected.
This suggests a programming error in the user software or a configuration
problem of the user!

2000

14 LimitDefError An incorrect limit value has been detected in mcpmax, mcpmin, mcpcp or
mcpcn (incorrect numerical value).

4000

15 ZeroProfile An interpolation command has been rejected because the indicated
traverse distance is almost or equal 0.

8000

16 RadiusError A circle or helix command has been rejected because the circle radius to
be implemented is almost or equal 0.

0001
0000

17 SpoolerDeep
ToLess

The traversing profiles entered in the spooler are not sufficient for the
Look-ahead calculation. This causes unnecessary velocity limitations. In
worse cases, unauthorised accelerations are possible.

0002
0000

18 IO
ResetHandled

In the I/O area of the control system, there has been an exceptional reset.
This may suggest a hardware problem.

0004
0000

19 JSatSAFdone The spooler synchronicity monitoring system has detected an error state
and has stopped at least one axis unexpectedly and taken it out of the
interpolation group.

0008
0000

20 reserved This bit is reserved for the handling of an option. 0010
0000

21..31 Reserved for future use; these flags have an undefined value

4.4.64 rdf, read filter

DESCRIPTION: This command can be used to read in the current axis-specific PIDF filter
coefficients of the APCI-800x board. The default values of these coefficients are
specified using the TOOLSET program mcfg.exe.

BORLAND DELPHI: Procedure rdf(var tsrp:TSRP);
C: void rdf(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdf(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].kp, TSRP[n].ki, TSRP[n].kd, TSRP[n].kpl, TSRP[n].kfca, TSRP[n].kfcv

n = 0 .. Number of axis present -1
RETURN VALUE: After the command has been executed, the return values are in the TSRP

structure/record components listed above.
NOTE: You will find further details on the PIDF filter in chapter 2.1.2, OM / Chapter 4.1.1,

CM / Chapter 6.2 and PCAP command uf()

58 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.65 rdGCR, read gear configuration register

DESCRIPTION: With this function, the axis-specific Gear Configuration Register can be read.
[Chapter 6.3.3]

BORLAND DELPHI: procedure rdGCR (an: integer; var value: integer);
C: void rdGCR (long an, long *value);
VISUAL BASIC: Sub rdGCR (ByVal an As Long, value As Long)
PARAMETER: With an, the axis channel which has to be read out is indicated (0, 1, ...).

In value, the contents of the GCR register is returned.
RETURN VALUE: None
NOTE: See also document on the resource interface - GEAR

4.4.66 rdgf, read gear factor

DESCRIPTION: This function returns the axis-specific gear factor {gf}. The default value is specified
using the TOOLSET program mcfg.exe.

BORLAND DELPHI: Procedure rdgf(var tsrp:TSRP);
C: void rdgf(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdgf(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].gf
RETURN VALUE: After the command has been executed, the factor is available in the gf field with the

axis-specific unit.
NOTE: The gear factor can be set at any time with the PCAP command wrgf().

4.4.67 rdgfaux, read gear factor auxiliary channel

DESCRIPTION: This function returns the axis-specific ratio of stepper motor resolution to encoder
channel in stepper systems with encoder verification. The default value is 1.0; the
value can only be changed at runtime.

BORLAND DELPHI: function rdgfaux (an: integer; var value: double) : integer;
C: int rdgfaux(int an, double *value)
VISUAL BASIC: Function rdgfaux (ByVal an As Long, value As Double) As Long
RETURN VALUE: After successful execution, the function returns 0. In this case, the axis-specific

value of gfaux is available in value. With a return value ≠ 0, the value could not be
read, because e.g. RWMOS.ELF does not support the command.
 0 for success
-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: The factor can be set at any time with the PCAP command wrgfaux(). See also
Chapter 6.3.3

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.68 rdhac, read home acceleration

DESCRIPTION: This command can be used to read in the axis-specific reference travel
acceleration hac. The default value is specified using the TOOLSET program
mcfg.exe.

BORLAND DELPHI: Procedure rdhac(var tsrp:TSRP);
C: void rdhac(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdhac(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].hac
RETURN VALUE: After the command has been executed, the reference travel acceleration is

available in the hac field. The value is returned in the axis-specific acceleration
unit.

NOTE: The reference travel acceleration can be set at any time with the PCAP command
wrhac().

4.4.69 rdhvl, read home velocity

DESCRIPTION: This command can be used to read in the axis-specific reference travel velocity hvl.
The default value is specified using the TOOLSET program mcfg.exe.

BORLAND DELPHI: procedure rdhvl(var tsrp:TSRP);
C: void rdhvl(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdhvl(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].hvl
RETURN VALUE: After the command has been executed, the reference travel velocity is available in

the hvl field. The value is returned in the axis-specific velocity unit.
NOTE: The reference travel velocity can be set at any time with the PCAP command

wrhvl().

4.4.70 rdifs, read interface status

DESCRIPTION: This command can be used to read in status information of the APCI-800x.
BORLAND DELPHI: function rdifs(var tsrp:TSRP): integer;
C: int rdifs(struct TSRP far *tsrp);
VISUAL BASIC: Function rdifs(DTSRP As TSRP) As Long
TSRP COMPONENTS: TSRP[n].ifs
RETURN VALUE: The bit-coded function value is located in the structure/record component ifs and

has the structure described in the table below.
Function return value:
 0 for success
-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted

60 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.70.1 Axis qualifier ifs

This register can be used to interrogate various pieces of status information for the APCI-800x. If the status
or error information concerned is valid, this is indicated by the value 1 at the bit position involved. The bits
represent important internal status information for the APCI-8001. Possible causes of errors can be problems
at the voltage supply, EMC or hardware problems and should not actually occur. In case such an error
occurs the controlling internal I/0 interface is reset. A normal working process is then ensured once the
controller is booted anew.
The status information must be controlled cyclically by an application program.

Table 16: Bit-coded structure of the ifs word
Bit-No. Function
0 edv the system information and data filed in the EPROM are valid.
1 cncrdy: The CNC ready to operate relay is active (closed).
16 pfe: The Power Fail Error flag is set to "1" whenever the operating voltage at the APCI-800x falls below

a threshold voltage of 2.85V. After the module is switched on, the flag is likewise set to "1".
17 wdog: The Watchdog flag is set to "1" if the watchdog logic on the APCI-800x has been tripped.
18 iae: The Invalid Access Error flag is set to "1" if an invalid access operation has taken place within the

rw_MOS operating system software.
19 scwdog: The watchdog flag is set to „1“, if the watchdog safety logic (Secondary circle) has tripped the

APCI-800x.
20 scpfe: The Power Fail Error flag is always set to „1“, when the operating voltage at the APCI-800x falls

below a threshold of 4.75V. After the module is switched on, the flag is likewise set to „1“.
21 Bus Error flag: indicates an error in communication, e.g. with ENDAT, SSI or EtherCAT
22 EpmBaseResetFlag: An unexpected hardware reset in the I/O area of the motherboard has been

detected. This indicates EMC problems or a hardware error.
23 EpmOpmfResetFlag: An unexpected hardware reset in the I/O area of the option print has been

detected. This indicates EMC problems or a hardware error.
24..31 Not assigned, these flags have an undefined value.

Note: In an initialisation routine of the rw_MOS firmware, error flags 16 ... 20 are copied from an internal
logic register into the ifs register. The logic register is then erased, i.e. the flags are no longer available after
a second booting routine (BootFile). The flags can also be reset by the rifs() command [chapter 0].

4.4.71 rdifsb, read interface status bit

DESCRIPTION: This function can be used to interrogate one piece of APCI-8001 interface status
information. The axis number must be specified in the an parameter (0, 1, ...
MAXAXIS-1)

BORLAND DELPHI: function rdifsb(an:integer; bitnr:integer):integer;
C: int rdifssb(int an, int bitnr);
VISUAL BASIC: Function rdifsb(ByVal an As Long, ByVal bitnr As Long) As Long
RETURN VALUE: This function returns the value 1 or TRUE, if the corresponding input of bitnr is

active.
Assignment of bitnr to the status information concerned is described in Table 16.
However, for bitnr, counting starts with the value 1. This means that bitnr must
have the value 1 to retrieve edv, for example!

NOTE: See also PCAP command rdifs()

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.72 rdigi, reset digital inputs

DESCRIPTION: This function can be used to clear axis-specific status information(s) filed in digi.
BORLAND DELPHI: procedure rdigi(var tsrp:TSRP);
C: void rdigi(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdigi(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].digi

n = 0 .. number of axes -1
NOTE: rddigi() [Chapter 4.4.52]

4.4.73 rdipw, read in position window

DESCRIPTION: This function returns the axis-specific In-Position Window.
BORLAND DELPHI: procedure rdipw(var tsrp:TSRP);
C: void rdipw(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdipw(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].ipw
NOTE: After the command has been executed, the In-Position Window is available in the

ipw register in the axis-specific position unit. PCAP command wripw()

4.4.74 rdirqpc, read interrupt request PC

DESCRIPTION: This command can be used to interrogate the instantaneous status of the interrupt
source generated on the APCI-800x board. If the interrupt is active, the function
returns the value 1, otherwise the value 0.

BORLAND DELPHI: function rdirqpc: integer;
C: int rdirqpc(void);
VISUAL BASIC: Function rdirqpc() As Long
NOTE: The interrupt can be set or reset by the system variable IRQPC using an SAP

program [chapter 6.3.1.1 - PC interrupt generation].

4.4.75 rdjac, read jog acceleration

DESCRIPTION: This command can be used to read in the axis-specific jog acceleration jac. The
default value is specified using the TOOLSET program mcfg.exe.

BORLAND DELPHI: procedure rdjac(var tsrp:TSRP);
C: void rdjac(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdjac(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jac
RETURN VALUE: After the command has been executed, the jog acceleration is available in the jac

field. The value is returned in the axis-specific acceleration unit.
NOTE: The jog acceleration can be set at any time with the PCAP command wrjac().

62 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.76 rdJerkRel, read jerkrel

DESCRIPTION: This command can be used to read in the axis-specific paramter jerkrel in value.
BORLAND DELPHI: procedure rdJerkRel (an: integer; var value: double);
C: void rdJerkRel (long an, double *value);
VISUAL BASIC: Sub rdJerkRel (an As Long, ByVal value As Double)
PARAMETER: an = axis number (0..n)

Double = free variable for function value
RETURN VALUE: None
NOTE: jerkrel has always a value from 0..1.

See also chapter 6.3.3.

4.4.76.1 Axis qualifier jerkrel

This variable can parameterise the acceleration characteristics for S-form speed profiles (jerk limitation). This
factor is only effective when an S profile is selected (see register MODEREG chapter 6.3.1.5) and has the
following meaning:
The acceleration defined for S profiles is constantly the medium acceleration above the whole
acceleration/deceleration process. The maximum acceleration in the acceleration/braking ramp is calculated
as follows:

amax = a * (1 + jerkrel)

The value of jerkrel has the following consequence on the acceleration course.

0 = rectangular acceleration course
1 = triangular acceleration course
inbetween = trapezoidal acceleration course

Example: The value 0.2 is allocated to jerkrel.

The acceleration has now a trapezoidal course for all profiles.
The maximum acceleration in the middle of the trapez is 1.2 times faster as the set acceleration.

The medium acceleration above the whole acceleration/deceleration process is the programmed
acceleration (jac at JOG commands or trac at MOVE commands).
Values between 0 and 1 are possible for jerkrel. The default value is 1. Values out of the range 0..1 are
limited either to 0 or 1.

4.4.77 rdjtvl, read jog target velocity

DESCRIPTION: This command can be used to read in the axis-specific jog target velocity jtvl. The
default value is specified using the TOOLSET program mcfg.exe.

BORLAND DELPHI: procedure rdjtvl(var tsrp:TSRP);
C: void rdjtvl(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdjtvl(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jtvl
RETURN VALUE: After the command has been executed, the jog target velocity is available in the jtvl

field. The value is returned in the axis-specific velocity unit.
NOTE: The jog target velocity can be set at any time using the PCAP command wrjtvl().

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.78 rdjvl, read jog velocity

DESCRIPTION: This command can be used to read in the axis-specific jog velocity jvl. The default
value is specified using the TOOLSET program mcfg.exe.

BORLAND DELPHI: Procedure rdjvl(var tsrp:TSRP);
C: void rdjvl(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdjvl(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jvl
RETURN VALUE: After the command has been executed, the jog velocity is available in the jvl field.

The value is returned in the axis-specific velocity unit.
NOTE: The jog velocity can also be set at any time using the PCAP command wrjvl().

4.4.79 rdledgn, read led green

DESCRIPTION:
APCI-8001:

APCI-8008:

This function can be used to read in the current state of LED D29 (green).

This function can be used to read in the current state of LED D53 (green).

BORLAND DELPHI: function rdledgn: integer;
C: int rdledgn(void);
VISUAL BASIC: Function rdledgn() As Long
RETURN VALUE: The function's return value is 1, provided the LED is switched on, otherwise it is 0.
NOTE: PCAP command wrledgn(), system variable LEDGN

4.4.80 rdledrd, read led red

DESCRIPTION:
APCI-8001:

APCI-8008:

This function can be used to read in the current state of LED D31 (red).

This function can be used to read in the current state of LED D56 (red).

BORLAND DELPHI: function rdledrd: integer;
C: int rdledrd(void);
VISUAL BASIC: Function rdledrd() As Long
NOTE: PCAP command wrledrd(), system variable LEDRD

4.4.81 rdledyl, read led yellow

DESCRIPTION:
APCI-8001:

APCI-8008:

This function can be used to read in the current state of LED D30 (yellow).

This function can be used to read in the current state of LED D55 (yellow).

BORLAND DELPHI: function rdledyl: integer;
C: int rdledyl(void);
VISUAL BASIC: Function rdledyl() As Long
NOTE: PCAP command wrledyl(), system variable LEDYL

64 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.82 rdlp, read latched position

DESCRIPTION: This function returns the axis-specific latch position. The latching procedure can be
triggered by various mechanisms:

1. When an input planned with LP function is activated. Here, the maximum time
delay is two scan intervals (2.56 ms). A new latching procedure will only be
enabled after the latching input has been de-activated.
This method should only be used if 3 is not possible.
2. If an lps() PCAP command [chapter 4.4.25] has previously been executed and
the time delay specified there in the mst parameter has elapsed.
This method should only be used if 3 is not possible.
3. In real time (max. 1 µs time delay) by means of default-setting APCI-800x digital
inputs. A new latching procedure will only be enabled after the latching input has
been de-activated.
This is the preferred method for the acquisition of latched position values.

In all these methods, the actual position {rp} of the motor axis is put into
intermediate storage.
In stepper motor systems or analog feedback with encoder verification, also the
auxiliary channel AUX can be latched if the option “Use Encoder for position
feedback” is activated (mcfg system data).

BORLAND DELPHI: procedure rdlp(var tsrp:TSRP);
C: void rdlp(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdlp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].lp
RETURN VALUE: After the function has been executed, the latch position is available in the lp

register in the axis-specific position unit.
The priority of the three methods is the same as the order of their listing, i.e. real-
time latching has top priority

NOTE: PCAP command wrlp()

4.4.83 rdlpndx, read latched position index

DESCRIPTION: This function returns the axis-specific latch position of the index signal (zero track).
When the incremental coder's zero track is activated, the actual position {rp} of the
motor axis in real time is put into intermediate storage.

BORLAND DELPHI: procedure rdlpndx(var tsrp:TSRP);
C: void rdlpndx(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdlpndx(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].lp
RETURN VALUE: After the function has been executed, the latch position is available in the lp

register in the axis-specific position unit.
NOTE: Latching of the incremental coder's zero track is helpful in the coder verification

routine and for reference travel programming.
PCAP command wrlpndx()

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.84 rdlsm, read left spool memory

DESCRIPTION: This command returns the free spool area in bytes. By means of a PCAP or SAP-
application program, the freely available spool area can be interrogated at any time
you want and reloaded if necessary. This enables you to load very large traversing
profiles without interrupting profile generation. The spool area is loaded with spool
commands, using both programming methods (PCAP and SAP). All spool
commands cause the freely available spool area to decrease and all commands
executed from the spool area cause it to grow again.

BORLAND DELPHI: procedure rdlsm(var tsrp:TSRP);
C: void rdlsm(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdlsm(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].lsm
NOTE: The spooler size is axis-specific, i.e. the free spool area of the individual axis

channels may vary significantly. Approx. 145 kByte of spool area are available for
each axis channel.
The required spool memory per command can be modified by the future operating
system versions. It should not be used to determine the traverse profiles present in
the spooler.

4.4.85 rdMaxAcc – Read Maximum Acceleration Check

DESCRIPTION: With this command the maximum axis-specific acceleration value (MaxAcc) can be
read. This value can be used by RWMOS operating system software in order to
limit the trajectory acceleration so that no axis involved in a linear interpolation
exceeds the maximum acceleration accepted. If required, the trajectory
acceleration can be reduced.

BORLAND DELPHI: rdMaxAcc (an: integer; var value: double);
C: void rdMaxAcc (long an, double *value);
VISUAL BASIC: Sub rdMaxAcc (an As Long, ByVal value As Double)
PARAMETER: The axis number is indicated in an, the maximum acceleration accepted is returned

in value. This value is always interpreted in the interpolation unit.
RETURN VALUE: None
NOTE: See chapter 4.4.160 and 6.3.3

4.4.86 rdMaxVel – Read Maximum Velocity Check

DESCRIPTION: With this command the maximum axis-specific velocity value (MaxVel) can be read
for linear interpolation commands. The value can be used by RWMOS operating
system software in order to limit the trajectory velocity so that no axis involved in a
linear interpolation exceeds the maximum velocity accepted. If required, the
trajectory velocity can be reduced.

BORLAND DELPHI: rdMaxVel (an: integer; var value: double);
C: void rdMaxVel (long an, double *value);
VISUAL BASIC: Sub rdMaxVel (an As Long, ByVal value As Double)
PARAMETER: The axis number is indicated in an, the maximum velocity accepted is returned in

value. This value is always interpreted in the interpolation unit.
RETURN VALUE: None
NOTE: See chapter 4.4.161 and 6.3.3

66 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.87 rdMCiS – Read Move Commands in Spooler

DESCRIPTION: With this function the number of motion commands in the spooler of an axis.
BORLAND DELPHI: procedure rdMCiS (an: integer; var value: integer);
C: void rdMCiS (long an, long *value);
VISUAL BASIC: Sub rdMCiS (an As Long, ByVal value As Long)
PARAMETER: an = axis number
RETURN VALUE: The number of motion commands in spooler of the correspondung axis is returned

in value.
COMMENT: This functionality is only available in versions from May 2002 and later.
NOTE: This commands gives the current process state in Spooler.

4.4.88 rdmcp, read motor command port

DESCRIPTION: This command can be used to read in the current command values of the Motor-
Command-Ports.

BORLAND DELPHI: procedure rdmcp(var tsrp:TSRP);
C: void rdmcp(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdmcp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].mcp
RETURN VALUE:

The return value is available in the mcp field after the command has been
executed.

In the case of servo axes, a value in the range -32,767 .. 32,767 is
returned. This corresponds to a setpoint output voltage of approx. -10V ..
+10V.
In the case of stepping motor axes, this value is a time-delay, which is
determinant for the stepping frequency outputted. The time-delay can be
converted into the unit [s] as follows:

 tver = (mcp+1) * 2 / CLOCK;
 Example: with mcp = 12,499 and CLOCK = 70MHz
 tver = 0.333ms and f = 3kHz

Each time the time-delay tver elapses, the pulse signal is switched over,
i.e. after 2*tver a stepping signal with f = 1 / (2*tver) [Hz] is outputted.
The value returned in mcp lies within the range of
-1,048,575 .. +1,048,575.

The sign determines the current sense of rotation, i.e. for computing tver
only the absolute value of mcp must be utilized. If the value 0 is returned in
mcp, this means that no stepping signal is being output, i.e. the motor is at
a standstill.

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.89 rdMDVel – Read Maximum Velocity Skip

DESCRIPTION: The maximum axis-specific velocity jump (MDVEL) can be read with this
command. The value is used by the Look-ahead functionality of the operating
system software RWMOS to reduce the trajectory velocity so that no axis involved
in an interpolation exceeds the maximum velocity jump accepted.

BORLAND DELPHI: rdMDVel (an: integer; var value: double);
C: void rdMDVel (long an, double *value);
VISUAL BASIC: Sub rdMDVel (an As Long, ByVal value As Double)
PARAMETER: The axis number is indicated in an, the maximum velocity jump accepted is

returned in value. This value is always interpreted in the interpolation-specific
velocity unit.

RETURN VALUE: None
NOTE: See Chapter 0 and 6.3.3

4.4.90 rdModeReg – Read MODEREG

DESCRIPTION: With this command the register MODEREG of the operating system software
RWMOS can be read.

BORLAND DELPHI: rdModeReg (var value: integer);
C: void rdModeReg(long *value);
VISUAL BASIC: rdModeReg (value As Long)
PARAMETER: The ModeReg is returned in value.
NOTE: See also chapters 6.3.1.5 and 4.4.164.

4.4.91 rdmpe, read maximum position error

DESCRIPTION: This function returns the axis-specific position error limit value.
BORLAND DELPHI: procedure rdmpe(var tsrp:TSRP);
C: void rdmpe(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdmpe(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].mpe
NOTE: After the function has been executed, the maximum permitted position error is

available in the mpe register in the axis-specific position unit.
PCAP command wrmpe()

4.4.92 rdnfrax – read No-Feed-Rate-Axis

DESCRIPTION: With this command, the register NFRAX of the RWMOS operating system software
is read.

BORLAND DELPHI: Rdnfrax (var value: integer);
C: void rdnfrax (long *value);
VISUAL BASIC: Sub rdnfrax (ByVal value As Long)
PARAMETER: In value NFRAX is returned
NOTE: See also chapters 6.3.1 and 4.4.166

68 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.93 rdPosErr, read Position Error

DESCRIPTION: This function returns the axis-specific position error of the APCI-800x controller
actual value channel.

BORLAND DELPHI: procedure rdPosErr (var an: integer; var value: double);
C: void rdPosErr (long an, double *value)
VISUAL BASIC: Sub rdPosErr (an As Long, value As Double)
PARAMETER: an = Number of axes (0..n)

value = read position error
RETURN VALUE: After this function has been executed the position error of the axis an is available in

the variables value in the axis-specific poition unit.
NOTE: The position error cannot be written in [Chapter 6.3.3]

4.4.94 rdPcapIndex

DESCRIPTION: This command can be used to read the axis-specific variable PcapIndex.
BORLAND DELPHI: function rdPcapIndex (an: integer; var PcapIndex: integer): integer;
C: int rdPcapIndex (int an, int * PcapIndex);
VISUAL BASIC: Function rdPcapIndex (ByVal an As Long, PcapIndex As Long) As Long
PARAMETER: The axis channel to be read out is indicated by an (0, 1, ...).

In PcapIndex, the index value to be read is returned.
RETURN VALUE: 0 for success

-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: See also smlai, smlri, spda, spdr, ssfi, ssfni.

4.4.95 rdrp, read real position

DESCRIPTION: This function returns the axis-specific current position (= actual position or real
position). The position can be read out at any time you want, even while the axis is
being moved. A new actual value is available in each scan cycle (1.28 ms).

BORLAND DELPHI: procedure rdrp (var tsrp:TSRP);
C: void rdrp(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdrp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].rp
NOTE: After the function has been executed, the current position is available in the rp

register, in the axis-specific position unit.

4.4.96 rdrpd – read real position in display unit

DESCRIPTION: The function returns the current axis-specific position (= real position) in axis-
specific display unit. The position can be read at any time also during the running
of an axis. Per scan cycle (1.28 ms) a new actual value is available.

BORLAND DELPHI: procedure rdrpd(var tsrp:TSRP);
C: void rdrpd(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdrpd(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].rp
RETURN VALUE: None
EFFECT: After the execution of the function, the real position is available in the rp field, in the

axis-specific display unit.
NOTE: See also the commands rddp, rdrp, rddpd

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.97 rdrv, read real velocity

DESCRIPTION: The function returns the axi-specific actual velocity of the APCI-800x controller
actual valu channel.

BORLAND DELPHI: Procedure rdrv (var an: integer; var value: double);
C: void rddv (int *an, double *value);
VISUAL BASIC: Sub rddv (an As Long, value As Double)
PARAMETER: an = Number of axes (0..n)

value = Read velocity value
RETURN VALUE: After the execution of the function, the actual velocity is available in the variable

value in the axis-specific velocity unit.
NOTE: The actual velocity cannot be written in, yet can be read even if the control loop is

open.

4.4.98 rdSampleTime – Read Sample Time

DESCRIPTION: This command can be used to determine the sample time of the control.
BORLAND DELPHI: function rdSampleTime (var value: integer) as integer;
C: void rdSampleTime(long *value);
VISUAL BASIC: Function rdSampleTime (ByVal value As Long) As Long
RETURN VALUE: 1 for success,

0 for failure, where e.g. RWMOS.ELF does not yet support this function
PARAMETERS: Sample time returned in μs
NOTE: The sample time is displayed as a whole number of μs. The default value is 1280.

4.4.99 rdsdec, read stop deceleration

DESCRIPTION: This command returns the axis-specific stop deceleration sdec.
The default value is specified using the TOOLSET program mcfg.exe.

BORLAND DELPHI: procedure rdsdec(var tsrp:TSRP);
C: void rdsdec(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdsdec(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].sdec
RETURN VALUE: After the command has been executed the stop deceleration is available in the

sdec field. The value is returned in the axis-specific acceleration unit.
NOTE: The stop deceleration can be set at any time using the PCAP-command wrsdec().

4.4.100 rdsll, read software limit left

DESCRIPTION: This function returns the axis-specific left software limit position.
BORLAND DELPHI: procedure rdsll(var tsrp:TSRP);
C: void rdsll(struct TSRP far *tsrp);
VISUAL BASIC: TSRP[n].sll
TSRP COMPONENTS: Sub rdsll(DTSRP As TSRP)
NOTE: After the function has been executed, the left software limit position is available in

the sll register in the axis-specific position unit.
PCAP command wrsll()

70 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.101 rdslr, read software limit right

DESCRIPTION: This function returns the axis-specific right software limit position.
BORLAND DELPHI: procedure rdslr(var tsrp:TSRP);
C: void rdslr(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdslr(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].slr
NOTE: After the function has been executed, the right software limit position is available in

the slr register in the axis-specific position unit.
PCAP command wrslr()

4.4.102 rdslsp, read Slits / Stepperpulses

DESCRIPTION: This function determines the axis-specific resolution per motor turn {slsp} at
encoder or stepper motor system. The default value is determined with the
TOOLSET program mcfg.exe.

BORLAND DELPHI: function rdslsp (an: integer; var value: double): integer;
C: int rdslsp (long an, double *value);
VISUAL BASIC: Function rdslsp (ByVal an As Long, value As Double) As Long
TSRP-COMPONENTS: None
RETRUN VALUE: 1 when succesful, 0 when not successful, e.g.if the function RWMOS.ELF is not yet

supported.
After successful execution of the function, the factor slsp in value is available in
units, which were selected in mcfg.

NOTE: slsp can be set with the PCAP command wrslsp(). See also axis qualifier slsp.

4.4.103 rdtp, read target position

DESCRIPTION: This function can be used to interrogate the axis-specific target position. The target
position is always returned as an absolute distance or angle quantity.

BORLAND DELPHI: Procedure rdtp(var tsrp:TSRP);
C: void rdtp(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdtp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp
NOTE: After the function has been executed, the target position of the last traversing

command is available in the tp register in the axis-specific position unit. This
command is used for monitoring purposes only.

4.4.104 rdtpd – read target position in display unit

DESCRIPTION: This function can be used to interrogate the target position) in the axis-specific
display unit. The target position is always returned as an absolute position value.

BORLAND DELPHI: Procedure rdtpd(var tsrp:TSRP);
C: void rdtpd(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdtpd(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp
RETURN VALUE: none
EFFECT: After the function has been executed, the target position of the last traversing

command is available in the tp register in the axis-specific position unit. This
command is used for monitoring purposes only.

NOTE: See also commands rdtp, rddp, rdrp, rdrpd, rddpd

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.105 rdtrac, read trajectory acceleration

DESCRIPTION: Read the RWMOS system variable TRAC
BORLAND DELPHI: function rdtrac (var value:double): integer;
C: int rdtrac (double *value);
VISUAL BASIC: Function rdtrac (value As Double) as long
RETURN VALUE: 0 for success

-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: TRAC is the interpolation trajectory acceleration which is used with interpolation
commands that are called from the rw_SymPas programming environment (see
also rw_SymPas system parameter in Table 32).

4.4.106 rdtrovr, read trajectory override

DESCRIPTION: This command reads a state variable of the currently set trajectory velocity
correction value, which is taken into account for all interpolation commands (move
commands) and the correspondingly selected axes (PCAP command utrovr()).

BORLAND DELPHI: procedure rdtrovr(var value:double);
C: void rdtrovr(double *value);
VISUAL BASIC: Sub rdtrovr(value As Double)
RETURN VALUE: After the command has been executed, the trajectory velocity correction value will

be in the value variable.
NOTE: PCAP commands utrvr(), wrtrovr(), wrjovr(), rdtrovr() and rdjovr()

4.4.107 rdtrovrst, read trajectory override settling time

DESCRIPTION: With this command the programmed override-settling-time (see wrtrovrst chapter
4.4.175) can be read out.

BORLAND DELPHI: function rdtrovr(var value:double) : integer;
C: int rdtrovr(double *value);
VISUAL BASIC: Function rdtrovr(value As Double) as long
RETURN VALUE: 0 for success

-1: Command is not available in RWMOS version
-4: Time-out, reason unknown, communication with the motion control board is
 interrupted
The set override settling time is returned in value.

NOTE: PCAP command wrtrovrst

72 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.108 rdtrvl, read trajectory velocity

DESCRIPTION: Read the RWMOS system variable TRVL
BORLAND DELPHI: function rdtrvl (var value:double): integer;
C: int rdtrvl (double *value);
VISUAL BASIC: Function rdtrvl (value As Double) as long
RETURN VALUE: 0 for success

-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: TRVL is the interpolation trajectory acceleration which is used with interpolation
commands that are called from the rw_SymPas programming environment (see
also rw_SymPas system parameter in Table 32).

4.4.109 rdtrtvl, read trajectory target velocity

DESCRIPTION: Read the RWMOS system variable TRTVL
BORLAND DELPHI: function rdtrtvl (var value:double): integer;
C: int rdtrtvl (double *value);
VISUAL BASIC: Function rdtrtvl (value As Double) as long
RETURN VALUE: 0 for success

-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: TRTVL is the interpolation trajectory acceleration which is used with interpolation
commands that are called from the rw_SymPas programming environment (see
also rw_SymPas system parameter in Table 32).

4.4.110 rdzeroOffset, read zero offset

DESCRIPTION: With this command the currently set axis specific zero offset can be read. The
absolute value of th currently set axis specific zero offset is returned in value in the
axis specific position unit. With the parameter an the axis index of the axis channel
to be read (0..n) is indicated.

BORLAND DELPHI: Function rdZeroOffset (an: integer; var value: double) : integer;
C: Int rdZeroOffset (integer an, double *value);
VISUAL BASIC: Function rdZeroOffset (ByVal an As Long, value As Double) As Long
RETURN VALUE: 0 for success

-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: The zero offset can be set for example with the PCAP commands szpa (see
chapter 4.4.127) or szpr (see chapter 4.4.128).

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.111 rifs, reset interface status register

DESCRIPTION: This command causes various error flags in the APCI-800x interface status register
ifs (error bits 16, 17, 18 - pfe, wdog and iae) to be reset. Resetting should be
performed only in exceptional situations, e.g. in an error monitoring routine.

BORLAND DELPHI: procedure rifs(var tsrp:TSRP);
C: void rifs(struct TSRP far *tsrp);
VISUAL BASIC: Sub rifs(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].ifs
NOTE: [chapter 0 - rdifs()]

4.4.112 RPtoDP, Real-Position to Desired-Position

DESCRIPTION: This command enables the setpoint position {dp} of an axis to adopt the current
position {rp}. The command is executed without delay. It only takes effect though if
the relevant axes are not in a positioning profile, as otherwise the setpoint position
will be immediately replaced by the computed value of the profile generation.
However, it is possible to correct an axis traversing with a target velocity ≠ 0. The
relevant axes serve as parameters.

BORLAND DELPHI: procedure RPtoDP(var as: AS);
C: void RPtoDP (struct AS far *as);
VISUAL BASIC: Sub RPtoDP (DASEL As ASEL)
RETURN VALUE: none
NOTE: This command can be used when one or more axes are no longer regulated due to

a position error caused, for example, by axis blocking. Once the error has been
cleared, regulation can be continued from the previous position, even with
traversing axes. This command is available from RWMOS.ELF V2.5.3.100 and
mcug3.dll V2.5.3.80.

4.4.113 rs, reset system

DESCRIPTION: This command causes the complete axis system to be reset. The digital outputs
are set to the default values planned with the aid of the TOOLSET program
mcfg.exe. On the setpoint value channels 0 V output voltage is outputted in the
case of servo axes and 0 Hz stepping frequency in the case of stepping motor
axes. The position control loop is opened for all axes. The spooler data are
rejected in their entirety. All CNC task are halted. All software limits planned will no
longer be monitored. All override factors (PCAP commands wrjovr() and wrtrovr())
are set to the value 1.0.

BORLAND DELPHI: procedure rs;
C: void rs(void);
VISUAL BASIC: Sub rs()
NOTE: All system data, like accelerations, velocities, filter parameters, etc. remain stored

in memory and therefore need not be loaded again.
The status flags in register ifs are not influenced by this command.
The contents of all common integers and double variables are retained

74 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.114 scp – set controller params

DESCRIPTION: This function is used for customised extensions and serves for transferring a
parameter field of 15 x 15 floating points (predefined data structure
CTRLRPARAMS) axis-specifically to the control process.

BORLAND DELPHI: procedure scp (an: integer; var ctrlrparams: CTRLRPARAMS);
C: void scp (long an, struct CTRLRPARAMS *ctrlrparams);
VISUAL BASIC: Sub scp (ByVal an As Long, DCTRLRPARAMS As CTRLRPARAMS)
RETURN VALUE: None
EFFECT: The values in CTRLRPARAMS are transferred to the control system.
NOTE: Use and significance of the data to be transferred are described according to the

application.

4.4.115 sdels, spooler delete synchronous

DESCRIPTION: All commands entered in the spooler will be rejected. The entire spooler area is
again freely available. Spooler data rejection takes place for the axes specified in
AS.

BORLAND DELPHI: procedure sdels(var as:AS);
C: Void sdels(struct AS far *as);
VISUAL BASIC: Sub sdels(DASEL As ASEL)
NOTE: The ongoing operation, like a traversing command, will be concluded.

4.4.116 shp, set home position

DESCRIPTION: This command can be used to set the axis-specific zero (home position). The tp
parameter is stated in the axis-specific position unit. The command is generally
used after a reference search run for setting the machine zero. It can be executed
in both operating modes: control loop open and control loop closed. In order to
prevent jerky motor movements, however, it should not be used while the selected
axis channel is being moved.

BORLAND DELPHI: procedure shp(var tsrp:TSRP);
C: Void shp(struct TSRP far *tsrp);
VISUAL BASIC: Sub shp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp

n = 0 .. Number of axes present-1
NOTE: Until the first time this command is executed, the software limits planned are not

being monitored. This means that before execution of the shp() command a
reference travel can be carried out using all move and jog commands. After the
shp() command has been executed, the software limits are monitored until the next
ra() or RA() or rs() or RS command.
Readiness for software limit monitoring is indicated by the ref bit in the axst
register.
The shp command sets the actual position rp to the indicated value. Here, a
possible shift by a “backlash” value persists. A possible position offset due to a
value in “dpoffset” remains unconsidered in the actual position, but affects the new
value of the setpoint position (dp).
shp must not be called when traverse commands are entered in the spooler;
especially not in case of commands that are tool radius-corrected or with spline
commands.

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.117 spd, Spool Position Data

DESCRIPTION: The spd command can be used to spool position values, which are each taken
sampling-synchronously as setpoint position values.
By calling this command for several axes with an equal number of sets, an
interpolated traverse movement is possible.

BORLAND DELPHI: procedure spda (an:integer; size:integer; var spdbuf:SPDBUF);
C: void spda (int an, int size, struct SPDBUF *spdbuf);
VISUAL BASIC: Sub spda (ByVal an As Long, ByVal size As Long, SPDBUF As SPDBUF)
PARAMETER: an is the index of the axis to be accessed. In size, the number of calibration points

is specified. size may take values between 1 and 1000. spdbuf is an array, in which
the position calibration points are passed.

NOTE: • In this context, the sstvl command has to be taken into account if a
transition from a trajectory into a profile consisting of spd commands is to
take place without intermediate stop.

• This command is basically the same as spda; only here, no PcapIndex is
passed.

4.4.118 spda, Spool Position Data Absolute

DESCRIPTION: The spda command can be used to spool position values, which are each taken
sampling-synchronously as setpoint position values.
By calling this command for several axes with an equal number of sets, an
interpolated traverse movement is possible. The execution state can be determined
using an index.

BORLAND DELPHI: procedure spda (an:integer; size:integer; var spdbuf:SPDBUF; PcapIndex: integer);
C: void spda (int an, int size, struct SPDBUF *spdbuf, long PcapIndex);
VISUAL BASIC: Sub spda (ByVal an As Long, ByVal size As Long, SPDBUF As SPDBUF, ByVal

PcapIndex As Long)
PARAMETER: an is the index of the axis to be accessed. In size, the number of calibration points

is indicated. size values may be between 1 and 1000. spdbuf is an array in which
the position calibration points are transferred.
In PcapIndex, an index for identifying the current state of the command execution
is transferred. For each calibration point value, this index increments in the display.
The index can be read using the PcapIndex (# 32) resource.

NOTE: In this context, the sstvl command has to be taken into account if a transition from
a trajectory into a profile consisting of spda commands is to take place without
intermediate stop.

4.4.119 spdr, Spool Position Data Relative

Basically, this command is like spda; only in spdbuf, the position values are relative coordinates.

76 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.120 ssms, start spooled motions synchronous

DESCRIPTION: Spool commands can be used to transfer commands to the individual axis
channels of the APCI-800x: They are entered in a queue. The PCAP command
ssms() causes a synchronous start for spooler command processing for all axes
specified in AS.

BORLAND DELPHI: procedure ssms(var as:AS);
C: void ssms(struct AS far *as);
VISUAL BASIC: Sub ssms(DASEL As ASEL)
NOTE: chapter 2.2.8.2 - Spool-Mode

4.4.121 sstps, spooler stop synchronous

DESCRIPTION: This command is used to interrupt command processing from the spooler for all
axis channels selected in AS.

BORLAND DELPHI: procedure sstps(var as:AS);
C: void sstps(struct AS far *as);
VISUAL BASIC: Sub sstps(DASEL As ASEL)
NOTE: The current command is completely processed. The commands that are in the

spooler are preserved and can be continued with SSMS. But please pay attention if
the spooler contains traverse commands with target velocities ≠ 0.
In error situations, when the spooler contents are to be rejected, it is better to use
direct commands to stop the axes concerned (ms or js), as these commands
discontinue the current contour and at the same time reject the spooler contents.

4.4.122 sstvl, Spooler Set Target Velocity

DESCRIPTION: The target velocity of a trajectory of all axes specified in AS that is available in the
spooler can be set to a defined value with the aid of the sstvl command. The
direction of the target velocity corresponds to the direction of the last traverse
command. The indicated target velocity must be achievable and must not be
limited by system settings such as MdVel, MaxVel or MaxAcc. Otherwise, the
target velocity value is reduced accordingly.

BORLAND DELPHI: procedure sstvl(var as:AS, tvl: double);
C: void sstvl (struct AS far *as, double tvl);
VISUAL BASIC: Sub sstvl(DASEL As ASEL, ByVal tvl As Double)
PARAMETER: In as, the axes to be handled are defined. In tvl, the desired trajectory velocity is

transferred.
NOTE: This command can be used to continue a trajectory programmed before with SPD

commands (spd, spda or spdr) without velocity decrease. Without this command,
the profile programmed before would be decelerated to the velocity of 0 at the
position transition during active Look-ahead.

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.123 ssf, Spool-Special-Function

DESCRIPTION: This commands allows to enter other commands as traverse commands in the
spooler. The command you want to execute is entered with the parameter
command.

BORLAND DELPHI: procedure ssf(an: integer; command: integer; value:double); far; stdcall;
C: void ssf(int axis, int command, double value);
VISUAL BASIC: Sub ssf(ByVal an As Long, ByVal command As Long, ByVal value As Double)
CALLING PARAMETER: The value value is entered to the axis defined in axis.

The following commands are available at the moment:

Command Description
0 .. 999 Describe CI-Variable with Value.
1000 Stop the spooler processing, this command is only carried

out when the target velocity of the profile last entered is 0.
1001 Set digital outputs, the outputs to be set are specified

bitwise in Value.
1002 Reset digital outputs, the outputs to be reset are specified

bitwise in Value.
1003 Stop the spooler processing during the time defined in

Value. The time unit is 64 µs. The real waiting time is
multiplied several times by the scan time. This command is
only carried out if the target velocity of the profile last
entered is 0. The waiting process can be prematurely
ended e.g. with the command SSMS.

1004 Stop the spooler processing until the inputs specified in
Value are active. The inputs are specified in bit-coded
form. This command is only carried out if the target
velocity of the profile last entered is 0.
The waiting process can be prematurely ended e.g. with
the command SSMS. Only inputs of the respective axis
group can be specified at a time.

1005 Stop the spooler processing until the value 0 is entered in
the common variable CI99. The value entered in Value is
first entered in CI99. When the command is to be executed
the CI99 is set by default and must not be used for any
other purpose (see also Chapter 4.4.123.1).
Note: The PCAP command ClearCI99 must be used to
delete CI99, because otherwise, the axes may be started
asynchronously.

1006 Stop the spooler processing until the command was
activated or executed with the same parameter for all bit-
coded axes entered in Value. With this command the
spooler processing can be synchronised by different axes
(see also Chapter 4.4.123.1).

1015 The parameter value is added to CI99. Then the spooler
processing is stopped until CI99 contains the value 0. The
wait command is only executed if the target velocity of the
previous profile is 0 (see also Chapter 4.4.123.1).
Note: The PCAP command ClearCI99 must be used to
delete CI99, because otherwise, the axes may be started
asynchronously.

78 PM / PROGRAMMING AND REFERENCE MANUAL

Command Description
1025 In the variable CI99, the bit assigned to the axis is set.

Then the spooler processing is stopped until this bit is
reset in CI99. The wait command is only executed if the
target velocity of the previous profile is 0 (see also Chapter
4.4.123.1).
Note: The PCAP command ClearCI99 must be used to
delete CI99, because otherwise, the axes may be started
asynchronously.

1101 Activate PC interrupt request
1200
...
1207

Write the Motor-Command-Port mcp of an axis in the
system with the index 0..7
1200 = 1. axis, 1201 = 2. axis, etc.

2001 Reset the target velocity in the last spooled traverse
profile.

10000
...
10999

Set bits in CI-variable. The bits to be set are indicated in
Value.

11000
...
11999

Reset bits in CI-Variable. The bits to be reset are indicated
in Value.

20000
...
20999

Write on CD-variable with value.

4.4.123.1 Notes on SSF wait commands

Some of the above described wait commands use the common integer variable CI99.
Here it should be noted that these variables from the PCAP programming are written on via direct PCI
memory access and thus asynchronously to the RWMOS operating system software. To achieve error-free
synchronicity of axes after a profile continuation via an SSF wait command, the DLL command ClearCI99
must therefore be used.
In some of the commands specified above, bit-coded data, e.g. of inputs, outputs or axes, is expected. Here,
the corresponding bit numbers are assigned to the relevant number of the value to be programmed.
Inputs 1 and 3, for example, are to be specified in bit-coded form. In this case, the hexadecimal value 5 must
be programmed. This means it is possible to specify multiple axes, inputs or outputs in one data word.

EXAMPLES: ssf(A1, 125, 999); // Write CI125 with the value 999

ssf(A1, 1001, 1); // Set output O1 at axis 1
ssf(A1, 1002, 4); // Reset output O3 at axis 1

4.4.124 startcnct, start numeric controller task

DESCRIPTION: This command can be used to start a previously loaded SAP program. The CNC
task selected in TaskNr (values 0..3) processes the SAP program right from its
beginning. The PCAP command txbf2() can be used for loading.

BORLAND DELPHI: procedure startcnct(TaskNr:integer);
C: void startcnct(int TaskNr);
VISUAL BASIC: Sub startcnct(ByVal TaskNr As Long)
NOTE: A currently running SAP program will be stopped automatically before this

command is executed.
PCAP command txbf2()

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.125 stepcnct, step numeric controller task

DESCRIPTION: This command is used for executing an SAP program line by line.
BORLAND DELPHI: procedure stepcnct (TaskNr:integer);
C: void stepcnct(int TaskNr);
VISUAL BASIC: Sub stepcnct(ByVal TaskNr As Long)
NOTE: The PCAP command stepcnct() has not yet been implemented at present!

4.4.126 stopcnct, stop numeric controller task

DESCRIPTION: This command causes the SAP program currently being run to stop in the CNC
task selected with TaskNr (values 0..3) and de-activates this CNC task. The SAP
program can be continued with the SAP command CONTCNCT() or the PCAP
command contcnct() .

BORLAND DELPHI: procedure stopcnct(TaskNr:integer);
C: void stopcnct(int TaskNr);
VISUAL BASIC: Sub stopcnct(ByVal TaskNr As Long)
NOTE: Any EVENT handlers enabled in the SAP program will no longer be processed

after the stopcnct() command has been executed. Before this command is
executed, the drive should be put into a safe operating state.

4.4.127 szpa, set zero position absolute

DESCRIPTION: This command sets an axis-specific virtual zero position. The parameter Position is
specified in the axis-specific position unit. The parameter an specifies the axis
number. It can be executed in both operating modes: control loop open and control
loop closed. In order to prevent jerky motor movements, however it should not be
used while the selected axis channel is being moved.

BORLAND DELPHI: procedure szpa(an: integer; Position: double);
C: void szpa(int an, double Position);
VISUAL BASIC: Sub szpa(ByVal an As Long, ByVal Position As Double)
NOTE: • By calling up szpa with the position value 0, a zero offset which has been

possibly set can be deleted. The currently set position value of the zero
offset can be read with the command rdZeroOffset Chapter 4.4.110).
See also Bit ClearZeroPosition in the register ModeReg.

• szpa (szpr) must not be called when traverse commands are entered in the
spooler; especially not in case of commands that are tool-radius-corrected
or with spline commands.

80 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.128 szpr, set zero position relative

DESCRIPTION: This commands sets an axis-specific virtual zero position to a relative position. The
parameter Position is specified in the axis-specific position unit. The parameter an
specifies the axis number. It can be executed in both operating modes: control loop
open and control loop closed. In order to prevent jerky motor movements, however
it should not be used while the selected axis channel is being moved.

BORLAND DELPHI: procedure szpr(an: integer; Position: double);
C: void szpr(int an, double Position);
VISUAL BASIC: Sub szpr(ByVal an As Long, ByVal Position As Double)
NOTE: • By calling up szpa with the position value 0, a zero offset which has been

possibly set can be deleted. The currently set position value of the zero
offset can be read with the command rdZeroOffset (Chapter 4.4.110).
See also Bit ClearZeroPosition in the register ModeReg.

• szpr (szpa) must not be called when traverse commands are entered in the
spooler; especially not in case of commands that are tool-radius-corrected
or with spline commands.

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.129 txbf2, transmit binary file

DESCRIPTION: This function is used to transfer the file specified in the string or character
parameter to the APCI-800x board. The specified file is first searched in the current
working directory. Then the directories which are specified in the environment
variable PATH are searched. There is an additional function (txbf()) in the fucntion
library for compatibility reasons: yet this function txbf() does not support any file
name including drive or path information. When the function txbf2 is called up two
special file types are essentially permitted.
Firstly, the system.dat system file (or files with a compatible structure) and
secondly the autocode files (CNC files) with the file extension name ".CNC"
generated from the IDE or using the ncc.exe command line compiler.
Transferring the system.dat system file has the following results:
All axis channels will be initialized with the axis-specific system data. The filter
coefficients of the PIDF filter will be recomputed, as with the PCAP command uf().
These system data can also be edited in the TOOLSET program mcfg.exe. Any
system variables previously altered (e.g. axis-specific velocities, accelerations,
etc.) are overwritten again by this command.
Important! Transferring CNC files has the following result: the current program
main memory of a CNC task is overwritten with the contents of the specified
autocode file. This is why the task concerned is automatically halted before the
load operation. The CNC file also contains the information on which task it has to
be loaded into (Task 0..3). After the CNC file has been successfully transferred, it
can be started with the PCAP command startcnct() or the PCAP command
STARTCNCT().

BORLAND DELPHI: function txbf2(var filename:string):integer;
C: int txbf2(char far *filename);
VISUAL BASIC: Function txbf2(ByVal filename As String) As Long
RETURN VALUE: The function can return the following values:

Return value Error description
0 No error
20 File cannot be opened. Possible causes are as follows:

 - Invalid file name
 - File does not exist
 - Path and search drive is invalid

21 The file too large for the CNC task main memory.
22 Invalid file type (Not a SAP file nor a system file)
23 Internal error when reserving memory.
24 Invalid task number is indicated. At a system file this

error shows that an invalid or damages system file was
used.

25 Data transfer error with remote systems (WebServices)

NOTE: Normally, the system.dat system file need be loaded only once per system start.
Please see the particulars given for the PCAP command mcuinit() in this context.
If you want, you can specify drive and path names in the filename parameter.

82 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.130 txbfErrorReport, initialisation error report

DESCRIPTION:

This function gives in plaintext the error return value of the function txbf2()
described above. A message box is displayed on screen and is to be closed after
reading.

BORLAND DELPHI: procedure txbfErrorReport(filename:PChar; error:integer);
C: void txbfErrorReport (char *filename, int error);
VISUAL BASIC: Sub txbfErrorReport (ByVal filename As String, ByVal error As Long)
NOTE: PCAP commands InitMcuSystem(), InitMcuSystem2() and InitMcuSystem3()
EXAMPLE: txbferror = InitMcuSystem3(...); // Execute file transfer

txbfErrorReport(..., initerror); // In case of error, display error return
 // value

4.4.131 uf, update filter

DESCRIPTION: You can use this command to set the APCI-800x PIDF filter for specific axes.
Before the command is executed, you must make sure that all the structure
components listed above have been initialized. This command can be executed at
any time, even during profile generation. This characteristic enables the system to
be matched to different load conditions in real time.

BORLAND DELPHI: procedure uf(var tsrp:TSRP);
C: void uf(struct TSRP far *tsrp);
VISUAL BASIC: Sub uf(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].kp, TSRP[n].ki, TSRP[n].kd, TSRP[n].kpl, TSRP[n].kfca, TSRP[n].kfcv

n = 0 .. Number of axis present -1
NOTE: You will find more details on the PIDF filter in chapter 2.1.22, OM / Chapter 4.1.1,

CM / Chapter 6.2 and PCAP command rdf().

4.4.132 utrovr, update trajectory override

DESCRIPTION: The velocity override currently set is taken into account for all axis channels
selected in AS.

BORLAND DELPHI: procedure utrovr(var as:AS);
C: void utrovr(struct AS far *as);
VISUAL BASIC: Sub utrovr(DASEL As ASEL)
NOTE: With this command, the last written trajectory override value is adopted for the

selected axes. If the bit OvrMode is not set in the Modereg register, this value is
adopted for the axis-specific variable jovr. You will find further information under
the PCAP command wrtrovr(). Depending on the value set through the function
wrtrovrst(), the override value is not adopted at once, but is adapted to the given
ramp time.

4.4.133 wraux, write auxiliary register

DESCRIPTION: This function sets the axis-specific auxiliary register to the value set in aux.
BORLAND DELPHI: procedure wraux (var tsrp:TSRP);
C: void wraux (struct TSRP far *tsrp);
VISUAL BASIC: Sub wraux (DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].aux
NOTE: See also chapter 4.4.44 and 6.3.3

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.134 wrcbcnct, write common buffer CNC-Task

DESCRIPTION: Each CNC task has a local memory area (referred to as the "Common Buffer"),
which can be read and written both by the CNC task concerned and by a PCAP
program.
This function can be used to write the complete CNC-task-specific buffer (or only a
part of it). The cbcnct function parameter is used to select the CNC task buffer, the
number of bytes to be written and the start address of the block which is to be
transferred to the APCI-800x board.

BORLAND DELPHI: function wrcbcnct(var cbcnct:CBCNCT):integer;
C: int wrcbcnct(struct CBCNCT far *cbcnct);
VISUAL BASIC: Sub wrcbcnct(DCBCNCT As CBCNCT)
RETURN VALUE: The wrcbcnct() function has the following bit-coded return value:

Bit number
0 0 = No error
0 1 = Task number invalid
1 0 = No error
1 1 = Maximum permitted buffer size exceeded

This means that the function in normal circumstances
returns the value 0.

2 0 = No error
2 Address error / Memory error

NOTE: The CNC-task-specific buffer size is 1,000 bytes.
The record structure for CBCNCT is to be found in Chapter 4.3.2.9. PCAP
command rdcbcnct(), SAP commands RDCBx() and WRCBx()

4.4.135 wrcd, write common double

DESCRIPTION: This function can be used for write access operations to the common variables,
which are predefined variables of the CNC task. The variables concerned are the
rw_SymPas system variables CD0 .. CD99. The first parameter here specifies the
number ndx of the double variable to be written. The value range of ndx here is 0 to
99. The second parameter is a pointer to the CDBUF structure with 100 double
variables. Before the command is executed, the variable to be written must be
initialized with the appropriate value you want.

BORLAND DELPHI: procedure wrcd(ndx: integer; var cdbuf:CDBUF);
C: void wrcd(int ndx, struct CDBUF far *cdbuf);
VISUAL BASIC: Sub wrcd(ByVal ndx As Long, CDBUF As CDBUF)
NOTE: The content of all common variables remains stored in memory even after a

system reset operation, which is executed by the rs() command, for example. If you
do not want this, you should set the variables concerned to the values you want
when you start the program.

84 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.136 wrci, write common integer

DESCRIPTION: This command is identical to the PCAP command wrcd(), except that here the
variables concerned are the rw_SymPas system variables CI0 .. CI999 of the
LONGINT type.

BORLAND DELPHI: procedure wrci(ndx: integer; var cibuf:CIBUF);
C: void wrci(int ndx, struct CIBUF far *cibuf);
VISUAL BASIC: Sub wrci(ByVal ndx As Long, CIBUF As CIBUF)
NOTE: PCAP command wrcd()

4.4.137 wrControllerFlags– Write Controller Flags

DESCRIPTION: This command is used to write on the axis-specific bit-coded ControllerFlags
register of the RWMOS operating system software.

BORLAND DELPHI: procedure wrControllerFlags (an: integer; var value: integer);
C: void wrControllerFlags (long an, long *value);
VISUAL BASIC: Sub wrControllerFlags (ByVal an As Long, value As Long)
PARAMETER: With an, the axis channel that has to be accessed is indicated (0, 1, ...).

In value, the bit-coded value of the ControllerFlags register that has to be written is
transferred.

NOTE: With the aid of flags (bits) in the axis-specific ControllerFlags register, different
options in the RWMOS.ELF control algorithm can be activated or controlled (see
also Chapters 4.4.51 and 6.3.1.4).

4.4.138 wrdigo, write digital outputs

DESCRIPTION: This register can be used to set the digital outputs of the APCI-8001.
It has to be considered that the digital outputs of the APCI-800x are not grouped in
an axis-specific way. If an output is to be set, this can be done by setting the
respective bit. The bit-coded structure of the digo status word can be found in the
table below:

 Bit-coded structure of the digo word

Bit
number

Function Connector X1 / PIN

0 Output 1 26
1 Output 2 27
2 Output 3 28
3 Output 4 29
4 Output 5 30
5 Output 6 31
6 Output 7 32
7 Output 8 33
8..31 Not assigned --

BORLAND DELPHI: procedure wrdigo(var tsrp:TSRP);
C: void wrdigo(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrdigo(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].digo

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.139 wrdigob, write digital output bit

DESCRIPTION: This function can be used to set or reset one APCI-8001 digital output. The axis
number must be specified in the an parameter (0, 1, ... MAXAXIS-1). The output is
reset with the value 0 or FALSE.

 Assignment of bitnr to the respective APCI-800x digital outputs

 ‘bitnr’ Function Connector X1 / PIN
1 Output 1 26
2 Output 2 27
3 Output 3 28
4 Output 4 29
5 Output 5 30
6 Output 6 31
7 Output 7 32
8 Output 8 33
9..32 Not assigned --

BORLAND DELPHI: procedure wrdigob(an:integer; bitnr:integer; value: integer);
C: wrdigob(int an, int bitnr, int value);
VISUAL BASIC: Sub wrdigob(ByVal an As Long, ByVal bitnr As Long, ByVal value As Long)
NOTE: PCAP command wrdigo()

4.4.140 wrdp, write desired position

DESCRIPTION: You can use this command to write the axis-specific setpoint position (dp). This
command is normally never needed and should be used only in quite exceptional
cases, like testing or commissioning jobs. Alteration of the setpoint position is
operative only in the position control operating mode. If there are significant
differences between this setpoint position (dp) and the current position (rp), you
must anticipate that the motor will be corrected to this position at maximum system
acceleration.

BORLAND DELPHI: procedure wrdp(var tsrp:TSRP);
C: void wrdp(struct TSRP far *tsrp) ;
VISUAL BASIC: Sub wrdp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].dp
NOTE: Writing the setpoint position (dp) during execution of motion commands may lead

to uncontrolled process behaviour and should therefore be avoided.
PCAP command rddp()

86 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.141 wrdpoffset, write desired position offset

DESCRIPTION: With this command the axis specific set position offset (dpoffset) can be described.
BORLAND DELPHI: function wrdpoffset (an: integer; var value: double): integer;
C: int wrdpoffset(int an, double *value);
VISUAL BASIC: Function wrdpoffset (ByVal an As Long, value As Double) As Long
PARAMETER: With an the axis channel, which has to be called, is indicated (0, 1, ...).

In value the position offset, which has to be written, is transferred in the axis
specific position unit.

RETURN VALUE: 0 for success
-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: In general here only small changes may be programmed, because the set point
changes cause a jump of the axs. See also axis-qualifier dpoffset in Table 37. With
a dvoffset value (see Chapter 4.4.142), the velocity offset of dpoffset can be
parameterised, though.
This register can be used e.g. for a regulation, overlaying the position controller, or
for a spindle linearisation / spindle correction.
Notice: This mechanism is used internally by the so-called RTCP (Rotation Tool
Center Point) correction. If this correction is used, the setpoint position offset
dpOffset must not be written on with the corresponding axes.

4.4.142 wrdvoffset, write desired velocity offset

DESCRIPTION: With this command, the velocity offset (dvoffset) of the axis-specific setpoint
position offset (dpoffset) can be written on.

BORLAND DELPHI: function wrdvoffset (an: integer; var value: double): integer;
C: int wrdvoffset(int an, double *value);
VISUAL BASIC: Function wrdvoffset (ByVal an As Long, value As Double) As Long
PARAMETER: With an, the axis channel which has to be accessed is indicated (0, 1, ...).

In value, the velocity offset which has to be written is returned in the axis-specific
position unit.

RETURN VALUE: 0 for success
-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: With the value 0, changes of dpoffset are immediately adopted. The default value
is 0.

4.4.143 wrEffRadius – Write Effective Radius

DESCRIPTION: With the command the effective radius can be written for a rotatory axis.
BORLAND DELPHI: wrEffRadius (an: integer; var value: double);
C: void wrEffRadius (long an, double *value);
VISUAL BASIC: Sub wrEffRadius (an As Long, ByVal value As Double)
PARAMETER: The axis number is indicated in an, the effective radius is transmitted in value in the

unit which is used per PU.
NOTE: See chapter 6.3.3

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.144 wrGCR, write gear configuration register

DESCRIPTION: With this function, the axis-specific Gear Configuration Register can be written on.
[Chapter 6.3.3]

BORLAND DELPHI: procedure wrGCR (an: integer; var value: integer);
C: void wrGCR (long an, long *value);
VISUAL BASIC: Sub wrGCR (ByVal an As Long, value As Long)
PARAMETER: With an, the axis channel which has to be read out is indicated (0, 1, ...).

In value, the contents of the GCR register is returned.
RETURN VALUE: None
NOTE: See also document on the resource interface - GEAR

4.4.145 wrgf, write gear factor

DESCRIPTION: You can use this command for resetting the axis-specific gear factor in the
appropriate unit. This is necessary, for example, with indexing mechanisms or
runtime-entailed alterations to system variables, like workpiece or tool dimensions
or other correction factors.

BORLAND DELPHI: procedure wrgf(var tsrp:TSRP);
C: void wrgf(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrgf(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].gf
NOTE: Remember that (particularly if there are large alterations in the gear factor) the

current axis-specific acceleration and velocity parameters have to be matched to
this new factor, since this is utilized for converting these system parameters.
The value currently set for gf can be read with the PCAP command rdgf().

4.4.146 wrgfaux, write gear factor auxiliary channel

DESCRIPTION: With this function, the axis-specific ratio of stepper motor resolution to encoder
channel in stepper systems with encoder verification can be written. The default
value is 1.0; the value can only be changed at runtime.

BORLAND DELPHI: function wrgfaux (an: integer; var value: double) : integer;
C: int wrgfaux(int an, double *value)
VISUAL BASIC: Function wrgfaux (ByVal an As Long, value As Double) As Long
RETURN VALUE: After successful execution, the function returns 0. In this case, the value in value

could be successfully written to the axis an. With a return value ≠ 0, the value could
not be written, because e.g. RWMOS.ELF does not support the command.
 0 for success
-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: The factor can be read at any time with the PCAP command rdgfaux(). See also
Chapter 6.3.3.

88 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.147 wrhac, write home acceleration

DESCRIPTION: You use this command to set the axis-specific maximum acceleration hac for all
reference travel commands (home commands). If this command is not executed,
the system will work with the system parameter specified in the TOOLSET program
mcfg.exe. The system parameter can be overwritten any time you want.

BORLAND DELPHI: procedure wrhac(var tsrp:TSRP);
C: void wrhac(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrhac(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].hac
NOTE: The value currently set for hac can be read with the PCAP command rdhac().

4.4.148 wrhvl, write home velocity

DESCRIPTION: You use this command to set the axis-specific maximum velocity with the aid of the
hvl variable for all reference travel commands (home commands). If this command
is not executed, the system will work with the system parameter specified in the
TOOLSET program mcfg.exe. The system parameter can be overwritten any time
you want.

BORLAND DELPHI: procedure wrhvl(var tsrp:TSRP);
C: void wrhvl(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrhvl(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].hvl
NOTE: The value currently set for hac can be read with the PCAP command rdhvl().

4.4.149 wripw, write in position window

DESCRIPTION: This command can be used to alter (during the run time) the In-Position Window
{ipw} specified using the TSW program mcfg.exe. The window is re-specified to the
value set in ipw. The value is stated in the axis-specific position unit.

BORLAND DELPHI: procedure wripw(var tsrp:TSRP);
C: void wripw(struct TSRP far *tsrp);
VISUAL BASIC: Sub wripw(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].ipw
NOTE: The "In-Position-Window“ is monitored only when a value greater than 0.0 has

been specified.
(MCFG / Chapter 1.7.2.1.11)
PCAP command rdipw()

4.4.150 wrjac, write jog acceleration

DESCRIPTION: This command is identical to the PCAP command wrhac(), except that here the
maximum system acceleration is specified for all jog commands using the jac
variable.

BORLAND DELPHI: procedure wrjac(var tsrp:TSRP);
C: void wrjac(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrjac(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jac
NOTE: The value currently set for jac can be read with the PCAP command rdjac().

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.151 wrJerkRel, write jerkrel

DESCRIPTION: With this command the axis-specific parameter jerkrel can be written in.
BORLAND DELPHI: procedure wrJerkRel (an: integer; var value: double);
C: void wrJerkRel (long an, double *value);
VISUAL BASIC: Sub wrJerkRel (an As Long, ByVal value As Double)
PARAMETER: an = Number of axes (0..n)

value = value to be zu written
RETURN VALUE: None
NOTE: Only one value between 0 and 1 can be allocated to jerkrel. Lower or higher values

are limited. See also chapter 4.4.76 and 6.3.3

4.4.152 wrjovr, write jog override

DESCRIPTION: This command sets the axis-specific velocity correction value. This correction value
is taken into account in all jog commands. The jovr parameter must have a value
greater than 0.0. All values smaller than 1.0 will result in a reduction in axis
velocity. If value has a value greater than 1.0, this will be manifested in an
increased velocity.

BORLAND DELPHI: procedure wrjovr(var trsp:TSRP);
C: void wrjovr(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrjovr(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jovr
NOTE: Remember that the specified correction value acts equally on the current axis

acceleration. If the correction value is increased or reduced too rapidly, this may be
manifested in an acceleration jump (jerk) of the axis. The correction factor should
therefore be incremented or decremented in linear mode over time-delay loops,
until the final value you want has been reached. For execution of the PCAP
commands ra(), rs() or SAP commands RA(), RS, the override factor is initialized to
the default value of 1.0.
Whenn calling utrovr and selected axis, the value of jovr is set also, if this was not
switched off explicitely in the register variable ModeReg.
PCAP command rdjovr()

4.4.153 wrjtvl, write jog target velocity

DESCRIPTION: This command is used to set the axis-specific target velocity (jog) with the aid of
the jtvl variable for the jog commands ja() and jr(). If this command is not executed,
the system will work with the system parameter specified in the TOOLSET program
mcfg.exe. The system parameter can be overwritten any time you want.

BORLAND DELPHI: procedure wrjtvl(var tsrp:TSRP);
C: void wrjtvl(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrjtvl(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jtvl
NOTE: The value currently set for jtvl can be read with the PCAP command rdjtvl().

90 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.154 wrjvl, write jog velocity

DESCRIPTION: This command is identical to the PCAP command wrhvl(), except that here the
maximum traversing velocity is specified using the jvl variable for all jog
commands.

BORLAND DELPHI: procedure wrjvl(var tsrp:TSRP);
C: void wrjvl(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrjvl(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jvl
NOTE: The value currently set for jvl can be read with the PCAP command rdjvl().

4.4.155 wrledgn, write led green

DESCRIPTION:
APCI-8001:

APCI-8008:

This command can be used to switch the green SMD LED D29 on and off.
It is switched on with the value 1 and switched off with the value 0.
This command can be used to switch the green SMD LED D53 on and off. It is
switched on with the value 1 and switched off with the value 0.

BORLAND DELPHI: procedure wrledgn(value:integer);
C: void wrledgn(int value);
VISUAL BASIC: Sub wrledgn(ByVal value As Long)
NOTE: This command is primarily used as a testing and diagnostic tool. The SMD-LED is

located on the high back end of the solder side of the board.

4.4.156 wrledrd, write led red

DESCRIPTION:
APCI-8001:

APCI-8008:

as for PCAP command wrledgn(), but for the red LED D31

as for PCAP command wrledgn(), but for the red LED D56

BORLAND DELPHI: procedure wrledrd(value:integer);
C: void wrledrd(int value);
VISUAL BASIC: Sub wrledrd(ByVal value As Long)

4.4.157 wrledyl, write led yellow

DESCRIPTION:
APCI-8001:

APCI-8008:

as for PCAP command wrledgn(), but for the yellow LED D30

as for PCAP command wrledgn(), but for the yellow LED D55

BORLAND DELPHI: procedure wrledyl(value:integer);
C: void wrledyl(int value);
VISUAL BASIC: Sub wrledyl(ByVal value As Long)

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.158 wrlp, write latched position

DESCRIPTION: This command is used to set the axis-specific latch position to the value set in lp.
The value is specified in the axis-specific position unit.

BORLAND DELPHI: procedure wrlp(var tsrp:TSRP);
C: void wrlp(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrlp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].lp
NOTE: PCAP command rdlp()

4.4.159 wrlpndx, write latched position index

DESCRIPTION: This command is used to set the axis-specific latch position of the zero track
(index) to the value set in lp. The value is specified in the axis-specific position unit.

BORLAND DELPHI: procedure wrlpndx (var tsrp:TSRP);
C: void wrlpndx (struct TSRP far *tsrp);
VISUAL BASIC: Sub wrlpndx (DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].lp
NOTE: PCAP command rdlpndx()

4.4.160 wrMaxAcc – Write Maximum Acceleration Check

DESCRIPTION: With this command you can write the maximum axis-specific acceleration
(MAXACC). This value is used by the RWMOS operating system software to limit
the trajectory acceleration so that no axis involved in a linear interpolation excedd
the maximum acceleration accepted.

BORLAND DELPHI: wrMaxAcc (an: integer; var value: double);
C: void wrMaxAcc (long an, double *value);
VISUAL BASIC: Sub wrMaxAcc (an As Long, ByVal value As Double)
PARAMETER: The axis number is indicated in an, the maximum acceleration accepted is

transmitted in value in the interpolation-specific acceleration unit (PU and TU).
NOTE: To check this function, bit 7 in MODEREG register must be set (see chapter

6.3.1.5). When set to 0 the check function is disabled for the axis involved. The
function is only available with spooled commands.

4.4.161 wrMaxVel – Write Maximum Velocity Check

DESCRIPTION: With this command you can write the maximum axis-specific velocity (MAXVEL).
This value is used by the RWMOS operating system software to limit the trajectory
velocity so that no axies involved in a linear interpolation exceeds the maximum
velocity accepted.

BORLAND DELPHI: wrMaxVel (an: integer; var value: double);
C: void wrMaxVel (long an, double *value);
VISUAL BASIC: Sub wrMaxVel (an As Long, ByVal value As Double)
PARAMETER: The axis number is indicated in an, the maximum velocity accepted is transmitted

in value in the axis-specific velocity unit. This value is always interpreted in the
interpolation unit.

NOTE: To check this function, bit 7 in MODEREG register must be set (see chapter
6.3.1.5). When set to 0 the check function is disabled for the axis involved. The
function is only available with spooled commands.

92 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.162 wrmcp, write motor command port

DESCRIPTION:

APCI-8001:
APCI-8008:

This command is used to write the Motor-Command-Port to the value set in the
mcp field. You will find this particularly helpful during commissioning work, if you
want to check the drive system's setpoint value channel, for example. In idle mode
(no position control), the motor axis can be moved with this command in
uncontrolled form. This means, for example, that you can check the drive's sense
of rotation, or check the pulse acquisition feature and limit switches for correct
functioning and so on, before commissioning work is continued in the position
control mode.

In the case of servo axes, mcp can be set to a value between -32,767 and
+32,767. This value range corresponds to the analog output voltage range
of -10 V to +10 V. It may be necessary to allow for a planned inversion of
the analog output signal.
In the case of stepping motor axes, mcp can be used to specify a time-
delay, with the aid of which a stepping signal for stepping motor power
output stages is generated. The frequency of this stepping signal can be
computed as follows:

 fPulse = CLOCK/2/(mcp+1)

 Example: with mcp = 999 and CLOCK = 70MHz
 fPulse=35,000[Hz]

The CLOCK value is 70 MHz for the APCI-8001 and 66.66666 MHz for the
APCI-8008.
The value range of mcp lies between -1,048,574 and +1,048,574. The sign
selects the desired traversing direction and influences the axis-specific
directional signal. For the stepping signal fPulse, only the absolute value of
mcp is determinant. Remember that the value 0 in mcp causes a stepping
signal of 0 Hz, i.e. the motor halts.

BORLAND DELPHI: procedure wrmcp(var tsrp:TSRP);
C: void wrmcp(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrmcp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].mcp
NOTE: If the axis system is in position control, this command will be effective at most for

the duration of a scan interval, since the Motor-Command-Ports are set to new
values after the PIDF filter has been processed.
PCAP command rdmcp()

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.163 wrMDVel – Write Maximum Velocity Skip

DESCRIPTION: With this command you can write the maximum axis-specific velocity jump
(MDVEL). This value is used by the look-ahead functionality RWMOS operating
system software verwendet to limit the trajectory velocity so that no axis involved in
an interpolation exceeds the maximum velocity accepted.

BORLAND DELPHI: wrMDVel (an: integer; var value: double);
C: void wrMDVel (long an, double *value);
VISUAL BASIC: Sub wrMDVel (an As Long, ByVal value As Double)
PARAMETER: The axis number is indicated in an, the maximum velocity accepted is transmitte in

value in the activated position and time units (PU and TU) übergeben.
NOTE: The look-ahead mode is activated by setting the bit 0 in MODEREG register (see

chapter 6.3.1.5). The check function of the axis is disabled with the value 0. In this
case please consider also the bit 6 of MODEREG.
Important: In look-ahead mode the different profiles must be programmed with a
target velocity > 0 (generally = maximum velocity) so that the look ahead is really
effective.

4.4.164 wrModeReg – Write MODEREG

DESCRIPTION: With this command the register MODEREG of the RWMOS operating system
software can be described.

BORLAND DELPHI: wrModeReg (var value: integer);
C: void wrModeReg(long *value);
VISUAL BASIC: wrModeReg (ByVal value As Long)
PARAMETER: bitcodierter value für ModeReg
NOTE: With flags (bits) in the ModeReg register different options can be activated and

monitored in RWMOS.ELF such as e.g. look-ahead, S profile etc. (see chapter
6.3.1.5).

4.4.165 wrmpe, write maximum position error

DESCRIPTION: This command can be used to alter, during the run time, the position error limit
{mpe} specified with the aid of the TSW program mcfg.exe. The axis-specific
maximum permitted position error is reset to the value set in mpe. The value is
specified in the axis-specific position unit.

BORLAND DELPHI: procedure wrmpe(var tsrp:TSRP);
C: void wrmpe(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrmpe(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].mpe
NOTE: Position error monitoring is performed only if a value greater than 0.0 has been

specified and the control loop is closed.
(MCFG / Chapter 1.7.2.1.9)
PCAP command rdmpe()

94 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.166 wrnfrax, write No-Feed-Rate-Axis

DESCRIPTION: With this command on the NFRAX register of the RWMOS operating system
software is written.

BORLAND DELPHI: wrnfax (var value: integer);
C: void wrnfax (long *value);
VISUAL BASIC: Sub wrnfax (VyVal value As Long)
PARAMETER: Bit coded value for NFRAX
NOTE: In the register NFRAX so-called No-Feed-Rate axex can be defined bit coded.

These axes are not used for the calculation of the velocity at interpolation
commands; in spite of taking part in the interpolation. In this way the influence of
other axes for the velocity in interpolation profiles can be prevented.
See also rdnfrax function in chapter 4.4.92.

4.4.167 wrrp, write real position

DESCRIPTION: This command sets the axis-specific current position register to the value set in rp
and is operative only in open-loop mode (no position control). The value is
specified in the axis-specific position unit.

BORLAND DELPHI: procedure wrmpe(var tsrp:TSRP);
C: void wrmpe(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrmpe(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].mpe
NOTE: This command will cause the machine zero to be shifted automatically!

4.4.168 wrsdec, write stop deceleration

DESCRIPTION: This command is used to set the axis-specific stop deceleration sdec for the
following: the PCAP command js() [chapter 4.4.24], SAP command JS() [chapter
6.6.26], the software end positions (MCFG / Chapters 1.7.2.1.10 and 1.7.2.2.3)
planned with SMD and the digital inputs planned with LSL_SMD or LSR_SMD
projected digital inputs (MCFG / Chapter 1.7.2.5). If wrsdec() is not executed, the
system will work with the system parameter specified in the TOOLSET program
mcfg.exe. The system parameter can be overwritten any time you want.

BORLAND DELPHI: procedure wrsdec(var tsrp:TSRP);
C: void wrsdec(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrsdec(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].sdec
NOTE: The value currently set for sdec can be read with the PCAP command rdsdec()

(see chapter 4.4.98).

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.169 wrsll, write software limit left

DESCRIPTION: This command can be used to alter, during the run time, the axis-specific left
software limit position {sll} defined with the aid of the TSW program mcfg.exe. The
left software limit is reset to the value set in sll. The value is specified in the axis-
specific position unit.

BORLAND DELPHI: procedure wrsll(var tsrp:TSRP);
C: void wrsll(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrsll(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].sll
NOTE: The software limit set is taken into account only if the home position of the axis

channel involved has already been defined or is set after execution of this
command.
(MCFG / Chapter 1.7.2.1.10)
PCAP commands rdsll(), shp(), SAP command SHP()

4.4.170 wrslr, write software limit right

DESCRIPTION: This command is identical to the PCAP command wrsll(), but the right software limit
is redefined with the value set in the slr parameter.

BORLAND DELPHI: procedure wrslr(var tsrp:TSRP);
C: void wrslr(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrslr(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].slr

4.4.171 wrslsp, write Slits / Stepperpulses

DESCRIPTION: This command sets the axis-specific resolution per motor turn {slsp}. The default
value is determined with the TOOLSET program mcfg.exe.

BORLAND DELPHI: procedure wrslsp (an: integer; var value: double);
C: void wrslsp (long an, double *value);
VISUAL BASIC: Sub wrslsp (ByVal an As Long, value As Double)
TSRP COMPONENTS: None
NOTE: slsp can be read with the PCAP commaand rdslsp(). See also axis qualifier slsp.

For slsp only numeric values > 0.0 are allowed.

4.4.172 wrtp – write target position

DESCRIPTION: With this command, you can write the axis-specific target position (tp). This
command is usually only necessary and used in special cases.

BORLAND DELPHI: procedure wrtp(var tsrp:TSRP);
C: void wrtp(struct TSRP far *tsrp) ;
VISUAL BASIC: Sub wrtp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp
NOTE: By writing the target position (tp) when motion commands are executed an

uncontrolled process course can occur in certain cases. This is why it must be
avoided. See also PCAP command rdtp().

95 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.173 wrtrac, write trajectory acceleration

DESCRIPTION: Write the RWMOS system variable TRAC
BORLAND DELPHI: function wrtrac (var value:double) : integer;
C: int wrtrac (double *value);
VISUAL BASIC: Function wrtrac (value As Double) as long
RETURN VALUE: 0 for success

-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: TRAC is the interpolation trajectory acceleration which is used with interpolation
commands that are called from the rw_SymPas programming environment (see
also rw_SymPas system parameter in Table 32). With PCAP programming, this
parameter is transferred in the data structure LMP, CMP or HMP when it is called.
This acceleration is used only with the PCAP call of Motion-Stop (ms) if bit 15
(MS_DECEL) is set in the ModeReg register (Table 36).

4.4.174 wrtrovr, write trajectory override

DESCRIPTION: This command sets the trajectory velocity correction value for all interpolation
commands (move commands). The value parameter must have a value greater
than 0.0. All values smaller than 1.0 result in a reduction in the trajectory velocity. If
value has a value greater than 1.0, this will be manifested in an increase in
trajectory velocity.
The correction value specified in value is placed in intermediate storage on the
APCI-800x board in a system variable and does not become operative until after
execution of the PCAP command utrovr(), or the SAP command UTROVR(). The
axis channels selected there will be decelerated or accelerated even during
trajectory travel, depending on the value correction factor.

BORLAND DELPHI: procedure wrtrovr(var value:double);
C: void wrtrovr(double *value);
VISUAL BASIC: Sub wrtrovr(value As Double)
NOTE: Remember that the specified correction value acts equally on the current trajectory

acceleration. If the correction value is increased or decreased too quickly, this may
be manifested in an abrupt acceleration (jerk) of the axes. The correction factor
should therefore be incremented or decremented over time-delay loops in linear
mode until the final value you want has been reached. When the PCAP command
rs() or the SAP command RS is executed, the override factor is initialized to the
default value of 1.0.
PCAP commands wrtrovr(), wrjovr(), rdtrovr() and rdjovr()

PM / PROGRAMMING AND REFERENCE MANUAL

4.4.175 wrtrovrst, write trajectory override settling time

DESCRIPTION: With this command a „soft“ adaptation of the override value TROVR can be done
after the calling of utrovr() realisieren. In the parameter „value“ before the calling of
utrover() a time in seconds is indicated that is the adaptation time between the
values 0 and 1. In this way velocity jumps, which are caused by programming, can
be avoided. Indicated times that are smaller than the sampling interval are not
taken into consideration. The value 0 disables the function.

BORLAND DELPHI: function wrtrovr(var value:double) : integer;
C: int wrtrovr(double *value);
VISUAL BASIC: Function wrtrovr(value As Double) as long
RETURN VALUE: 0 for success

-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: Please also see the commands rdtrovrst, wrtrovr, rdtrovr, utrovr and rw_SymPas
system parameter TROVRST
Setting the Jog-Override using wrjovr is not affected by this function. See also Bit
25 in the MODEREG register (Chapter 6.3.1.4). Reading the TROVR parameter
always returns the programmed target value, even during the adaptation phase. If
the current effective override value is to be read during the adaptation phase, the
current Jog-Override of one of the axes involved can be used.

4.4.176 wrtrvl, write trajectory velocity

DESCRIPTION Write the RWMOS system variable TRVL
BORLAND DELPHI: function wrtrvl (var value:double) : integer;
C: int wrtrvl (double *value);
VISUAL BASIC: Function wrtrvl (value As Double) as long
RETURN VALUE: 0 for success

-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: TRVL is the interpolation trajectory acceleration which is used with interpolation
commands that are called from the rw_SymPas programming environment (see
also rw_SymPas system parameter in Table 32). With PCAP programming, this
parameter is transferred in the data structure LMP, CMP or HMP when it is called.

95 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.177 wrtrtvl, write trajectory target velocity

DESCRIPTION: Write the RWMOS system variable TRTVL
BORLAND DELPHI: function wrtrtvl (var value:double) : integer;
C: int wrtrtvl (double *value);
VISUAL BASIC: Function wrtrtvl (value As Double) as long
RETURN VALUE: 0 for success

-1 Command is not available in RWMOS version.
-4 Time-out, reason unknown, communication with the motion control board is
 interrupted
Other value <> 0 Unknown error at command execution

NOTE: TRTVL is the interpolation trajectory acceleration which is used with interpolation
commands that are called from the rw_SymPas programming environment (see
also rw_SymPas system parameter in Table 32). With PCAP programming, this
parameter is transferred in the data structure LMP, CMP or HMP when it is called.

	1 Introduction
	2 Internal details of the rw_MOS operating system software
	2.1 The APCI-800x position controller
	2.1.1 Control loop opened/closed
	2.1.2 PIDF filter
	2.1.2.1 The filter parameters KD, KI, KP
	2.1.2.2 Additional phase element
	2.1.2.3 Scan time

	2.2 The APCI-800x profile generator
	2.2.1 Profile generation for JOG commands
	2.2.2 Profile generation for MOVE commands
	2.2.3 Acceleration
	2.2.4 Maximum velocity
	2.2.5 Target velocity
	2.2.6 Velocity correction
	2.2.7 Target position / Traverse distance
	2.2.8 Operating modes for command processing
	2.2.8.1 Direct mode
	2.2.8.2 Spool mode
	2.2.8.3 Additional notes on spooler operation

	2.3 Interpolation with APCI-800x
	2.3.1 Linear interpolation
	2.3.1.1 Formal linear interpolation

	2.3.2 Circular interpolation
	2.3.3 Helical interpolation
	2.3.4 Surface area processing
	2.3.5 Synchronous and asynchronous interpolations

	2.4 APCI-800x limit switch handling
	2.4.1 TOM limit switch function (Turn-Off-Motor)
	2.4.2 SMA limit switch function (Stop-Motor-Abruptly)
	2.4.3 SMD limit switch function (Stop-Motor-Decelerate)

	2.5 Other function groups
	2.5.1 Application-specific system variables
	2.5.2 Application-specific axis variables

	3 APCI-800x Programming methods
	3.1 PC application programming (PCAP programming, or direct programming)
	3.2 Stand-alone application programming (SAP programming)
	3.2.1 SAP-Multitasking

	4 PC application programming
	4.1 Introduction
	4.2 Example programs for using the function libraries
	4.3 Definitions, structures and records
	4.3.1 Definitions
	4.3.2 Structures, records and types
	4.3.2.1 Structure/record type AS
	4.3.2.2 Structure/record type TSRP
	4.3.2.3 Structure/record type TRU (Trajectory Units)
	4.3.2.4 Structure/record type LMP (Linear Motion Parameters)
	4.3.2.5 Structure/record type CMP (Circular Motion Parameters)
	4.3.2.6 Structure/record type HMP (Helical Motion Parameters)
	4.3.2.7 Structure/record type HMP 3D (Helical Motion Parameters 3-Dimensional)
	4.3.2.8 Structure/record type ROSI (Risc Operating System Information)
	4.3.2.9 Structure/record type CBCNT (Common Buffer CNC-Task)
	4.3.2.10 Structure/record type CNCTS (Computerized Numerical Control Task Status)

	4.4 PCAP high-level language function reference list
	4.4.1 Structure of the reference list
	4.4.2 General information
	4.4.2.1 Function values and function return values

	4.4.3 azo, activate zero offsets
	4.4.4 BootErrorReport, initialisation error report
	4.4.5 BootFile, boot operating system file
	4.4.6 CardSelect
	4.4.7 ClearCI99
	4.4.8 cl, close loop
	4.4.9 clv, close loop velocity
	4.4.10 contcnct, continue numeric controller task
	4.4.11 ctru, change trajectory units
	4.4.12 getEnvStr, get Environment String
	4.4.13 gettskinfo, Get Task Informations
	4.4.14 gettskstr, Get Task Message String
	4.4.15 InitMcuErrorReport, initialisation error report
	4.4.16 InitMcuSystem, initialise mcu system
	4.4.17 InitMcuSystem2, initialise mcu system (2nd method)
	4.4.18 InitMcuSystem3, initialise mcu system (3rd method)
	4.4.19 ja, jog absolute
	4.4.20 jhi, jog home index
	4.4.21 jhl, jog home left
	4.4.22 jhr, jog home right
	4.4.23 jr, jog relative
	4.4.24 js, jog stop
	4.4.25 lpr – Latch Position Registers
	4.4.26 lprs – Latch Position Registers Synchronous
	4.4.27 lps, latch position synchronous
	4.4.28 mca, move circular absolute - smca, spool motion circular absolute
	4.4.29 mcr, move circular relative - smcr, spool motion circular relative
	4.4.30 mca3d, move circular absolute three dimensional - smca3d, spool motion circular absolute three dimensional
	4.4.31 mcr3d, move circular relative three dimensional - smcr3d, spool motion circular relative three dimensional
	4.4.32 mcuinit, motion control unit initialisation
	4.4.33 MCUG3_SetBoardIntRoutine
	4.4.34 MCUG3_ResetBoardIntRoutine
	4.4.35 mha, move helical absolute - smha, spool motion helical absolute
	4.4.36 mhr, move helical relative - smhr, spool motion helical relative
	4.4.37 mla, move linear absolute - smla, spool motion linear absolute
	4.4.38 mlr, move linear relative - smlr, spool motion linear relative
	4.4.39 ms, motion stop
	4.4.40 MsgToScreen, message to screen
	4.4.41 ol, open loop
	4.4.42 ra, reset axis
	4.4.43 rdap, read axis parameters
	4.4.44 rdaux, read auxiliary register
	4.4.45 rdaxst, read axis status
	4.4.46 rdaxstb, read axis status bit
	4.4.47 rdcbcnct, read common buffer CNC-Task
	4.4.48 rdcd, read common double
	4.4.49 rdci, read common integer
	4.4.50 rdcncts, read computerized numeric controller task status
	4.4.51 rdControllerFlags, read Controller Flag register
	4.4.52 rddigi, read digital inputs
	4.4.52.1 Axis-qualifier digi

	4.4.53 rddigib, read digital input bit
	4.4.54 rddigo, read digital outputs
	4.4.55 rddigob, read digital output bit
	4.4.56 rddp, read desired position
	4.4.57 rddpoffset, read desired position offset
	4.4.58 rddpd – read desired position in display unit
	4.4.59 rddv, read desired velocity
	4.4.60 rddvoffset, read desired velocity offset
	4.4.61 rdEffRadius – Read Effective Radius
	4.4.62 rdepc, read EEPROM programming cycle
	4.4.63 rdErrorReg, read Error Register
	4.4.63.1 Register ErrorReg

	4.4.64 rdf, read filter
	4.4.65 rdGCR, read gear configuration register
	4.4.66 rdgf, read gear factor
	4.4.67 rdgfaux, read gear factor auxiliary channel
	4.4.68 rdhac, read home acceleration
	4.4.69 rdhvl, read home velocity
	4.4.70 rdifs, read interface status
	4.4.70.1 Axis qualifier ifs

	4.4.71 rdifsb, read interface status bit
	4.4.72 rdigi, reset digital inputs
	4.4.73 rdipw, read in position window
	4.4.74 rdirqpc, read interrupt request PC
	4.4.75 rdjac, read jog acceleration
	4.4.76 rdJerkRel, read jerkrel
	4.4.76.1 Axis qualifier jerkrel

	4.4.77 rdjtvl, read jog target velocity
	4.4.78 rdjvl, read jog velocity
	4.4.79 rdledgn, read led green
	4.4.80 rdledrd, read led red
	4.4.81 rdledyl, read led yellow
	4.4.82 rdlp, read latched position
	4.4.83 rdlpndx, read latched position index
	4.4.84 rdlsm, read left spool memory
	4.4.85 rdMaxAcc – Read Maximum Acceleration Check
	4.4.86 rdMaxVel – Read Maximum Velocity Check
	4.4.87 rdMCiS – Read Move Commands in Spooler
	4.4.88 rdmcp, read motor command port
	4.4.89 rdMDVel – Read Maximum Velocity Skip
	4.4.90 rdModeReg – Read MODEREG
	4.4.91 rdmpe, read maximum position error
	4.4.92 rdnfrax – read No-Feed-Rate-Axis
	4.4.93 rdPosErr, read Position Error
	4.4.94 rdPcapIndex
	4.4.95 rdrp, read real position
	4.4.96 rdrpd – read real position in display unit
	4.4.97 rdrv, read real velocity
	4.4.98 rdSampleTime – Read Sample Time
	4.4.99 rdsdec, read stop deceleration
	4.4.100 rdsll, read software limit left
	4.4.101 rdslr, read software limit right
	4.4.102 rdslsp, read Slits / Stepperpulses
	4.4.103 rdtp, read target position
	4.4.104 rdtpd – read target position in display unit
	4.4.105 rdtrac, read trajectory acceleration
	4.4.106 rdtrovr, read trajectory override
	4.4.107 rdtrovrst, read trajectory override settling time
	4.4.108 rdtrvl, read trajectory velocity
	4.4.109 rdtrtvl, read trajectory target velocity
	4.4.110 rdzeroOffset, read zero offset
	4.4.111 rifs, reset interface status register
	4.4.112 RPtoDP, Real-Position to Desired-Position
	4.4.113 rs, reset system
	4.4.114 scp – set controller params
	4.4.115 sdels, spooler delete synchronous
	4.4.116 shp, set home position
	4.4.117 spd, Spool Position Data
	4.4.118 spda, Spool Position Data Absolute
	4.4.119 spdr, Spool Position Data Relative
	4.4.120 ssms, start spooled motions synchronous
	4.4.121 sstps, spooler stop synchronous
	4.4.122 sstvl, Spooler Set Target Velocity
	4.4.123 ssf, Spool-Special-Function
	4.4.123.1 Notes on SSF wait commands

	4.4.124 startcnct, start numeric controller task
	4.4.125 stepcnct, step numeric controller task
	4.4.126 stopcnct, stop numeric controller task
	4.4.127 szpa, set zero position absolute
	4.4.128 szpr, set zero position relative
	4.4.129 txbf2, transmit binary file
	4.4.130 txbfErrorReport, initialisation error report
	4.4.131 uf, update filter
	4.4.132 utrovr, update trajectory override
	4.4.133 wraux, write auxiliary register
	4.4.134 wrcbcnct, write common buffer CNC-Task
	4.4.135 wrcd, write common double
	4.4.136 wrci, write common integer
	4.4.137 wrControllerFlags– Write Controller Flags
	4.4.138 wrdigo, write digital outputs
	4.4.139 wrdigob, write digital output bit
	4.4.140 wrdp, write desired position
	4.4.141 wrdpoffset, write desired position offset
	4.4.142 wrdvoffset, write desired velocity offset
	4.4.143 wrEffRadius – Write Effective Radius
	4.4.144 wrGCR, write gear configuration register
	4.4.145 wrgf, write gear factor
	4.4.146 wrgfaux, write gear factor auxiliary channel
	4.4.147 wrhac, write home acceleration
	4.4.148 wrhvl, write home velocity
	4.4.149 wripw, write in position window
	4.4.150 wrjac, write jog acceleration
	4.4.151 wrJerkRel, write jerkrel
	4.4.152 wrjovr, write jog override
	4.4.153 wrjtvl, write jog target velocity
	4.4.154 wrjvl, write jog velocity
	4.4.155 wrledgn, write led green
	4.4.156 wrledrd, write led red
	4.4.157 wrledyl, write led yellow
	4.4.158 wrlp, write latched position
	4.4.159 wrlpndx, write latched position index
	4.4.160 wrMaxAcc – Write Maximum Acceleration Check
	4.4.161 wrMaxVel – Write Maximum Velocity Check
	4.4.162 wrmcp, write motor command port
	4.4.163 wrMDVel – Write Maximum Velocity Skip
	4.4.164 wrModeReg – Write MODEREG
	4.4.165 wrmpe, write maximum position error
	4.4.166 wrnfrax, write No-Feed-Rate-Axis
	4.4.167 wrrp, write real position
	4.4.168 wrsdec, write stop deceleration
	4.4.169 wrsll, write software limit left
	4.4.170 wrslr, write software limit right
	4.4.171 wrslsp, write Slits / Stepperpulses
	4.4.172 wrtp – write target position
	4.4.169 wrsll, write software limit left
	4.4.170 wrslr, write software limit right
	4.4.171 wrslsp, write Slits / Stepperpulses
	4.4.172 wrtp – write target position
	4.4.169 wrsll, write software limit left
	4.4.170 wrslr, write software limit right
	4.4.171 wrslsp, write Slits / Stepperpulses
	4.4.172 wrtp – write target position
	4.4.169 wrsll, write software limit left
	4.4.170 wrslr, write software limit right
	4.4.171 wrslsp, write Slits / Stepperpulses
	4.4.172 wrtp – write target position

