
Last updated: 21/09/2021, from disk V2.53VO
Board revision: APCI-8008 Rev. C

APCIe-8008 Rev. A
APCIe-8008-EC Rev. 0

Rev. 05/052022

www.addi-data.com

POSITIONING AND CONTOURING
CONTROL SYSTEM

APCI-8008 – ETHERCAT

(APCI-8008 / APCIe-8008 / APCIe-8008-EC)

CONTENTS 3

1 EtherCAT master .. 5

1.1 Brief description ... 5

2 Hardware requirements ... 6

2.1 APCIe-8008-EC ... 6
2.2 APCI-8008 and APCIe-8008 .. 6
2.3 Location of the connectors on BOB-3100 and APCI-8008 .. 7

3 Software requirements .. 9

4 Commissioning of the EtherCAT system .. 10

4.1 fwsetup.exe program .. 10
4.1.1 fwsetup monitor screen – HVC0 tab ... 10

4.1.1.1 Displaying RWMOS version and options ... 10
4.1.1.2 Further fwsetup diagnostic options .. 10

4.1.1.2.1 Assigning an alias address ... 10
4.1.2 fwsetup EtherCAT tab ... 11

4.1.2.1 EtherCAT page: Configuration ... 12
4.1.2.2 EtherCAT page: SAP ... 13

4.1.2.2.1 Explanation of the graphical operating icons 14
4.1.2.2.2 Explanation of the screen text output EtherCAT SAP 15

4.1.2.3 EtherCAT page: Preferences ... 16
4.1.3 EtherCAT SAP programming .. 16

4.1.3.1 EtherCAT access to slave modules via universal object interface 16
4.1.3.2 Access to service data objects (SDOs) .. 17
4.1.3.3 EtherCAT error handling .. 17

4.1.4 EtherCAT PCAP programming ... 17
4.1.4.1 Special features when accessing service data objects (SDO) 17

4.2 SDO initialisation using configuration data in a file .. 18
4.2.1 Structure of the configuration file .. 18

4.2.1.1 First line of sdos.conf ... 18
4.2.1.2 Following lines in sdos.conf .. 18
4.2.1.3 Notes .. 18

4.2.2 Saving a configuration file in the APCIx-8008-EC file system .. 19
4.3 EtherCAT diagnosis via universal object interface... 19

4.3.1 Working Counters and number of detected slaves in the bus .. 19
4.3.2 Lost Frame Counter .. 20
4.3.3 Status of the slaves in the bus .. 20

4.4 Reading bus and slave information .. 20
4.4.1 Determining general information of the slaves in the bus ... 20

4.4.1.1 Dev.# 700 hex .. 20

4 CONTENTS

4.4.2 Reading EtherCAT master information ... 21
4.4.2.1 Dev.# 900 hex .. 21

4.4.3 Reading and writing SDOs of the bus subscribers ... 21
4.5 Manual reading of and writing on SDOs in the slave directory .. 22
4.6 Commissioning of axes in mcfg.exe .. 23

4.6.1 Assignment of the motor axes ... 23
4.6.2 Setting the actual value resolution .. 23

4.7 Further EtherCAT-specific handling of the system .. 24
4.7.1 Restart of the boards via BootFile ... 24
4.7.2 Transferring the dmesg protocol into the Windows file system....................................... 24

5 Drive-specific properties ... 25

5.1 Omron servo drives .. 25
5.1.1 Accurax G5 drives ... 25

5.1.1.1 Operating modes .. 25
5.1.1.2 Digital inputs ... 25

5.1.2 Digital outputs .. 25
5.1.3 Touch Probe function / Latch functionality .. 25
5.1.4 Sysmac 1S servo drives .. 26

5.2 Panasonic MADHT1505 ... 26
5.2.1 Operating modes ... 26
5.2.2 Digital inputs .. 26
5.2.3 Digital outputs .. 26
5.2.4 Touch Probe function / Latch functionality .. 26
5.2.5 Quick Stop Deceleration (Object 6085 hex) .. 26

6 Configuration and diagnosis in the APCI-8008 console .. 27

6.1 Customisation of manufacturer-specific XML files for use with the APCI-8008 27
6.1.1 SM=?? ... 27
6.1.2 Additions to PDOs ... 27

6.2 Restarting the EtherCAT module ... 27
6.3 EtherCAT SDOs ... 28

7 Appendix ... 30

7.1 Pitfalls when setting up the system .. 30
7.2 Implemented devices ... 31

7.2.1 I/O modules ... 31
7.2.2 Drives .. 31

7.3 Figures ... 32
7.4 Tables ... 32

APCI-8008-EC 5

1 EtherCAT master
The APCI-8008-EC provides the user with the familiar function of the APCI-8008 with the option of
connecting EtherCAT slave components. These can be input/output modules or drive elements.
The family of the APCIx-8008 board includes three products which allow for EtherCAT connection:

APCI-8008 and BOB-3100
APCIe-8008 and BOB-3100
APCIe-8008-EC.

1.1 Brief description
The components (slaves) to be used in the EtherCAT bus must be implemented in the existing system
software. For this reason, the suitability of the intended EtherCAT components must be checked before each
use and, if necessary, be integrated by the manufacturer of the APCIx-8008 into the system software.
The boards APCI-8008 and APCIe-8008 also support a mixed version of EtherCAT components and
conventional drive components. This means that the standard interfaces (Analog Out, Incremental encoder,
I/O interface) can be operated along with EtherCAT components on the same system.
The cycle time of the control system is fixed to 1 ms and cannot be changed.

6 APCI-8008-EC

2 Hardware requirements

2.1 APCIe-8008-EC
Figure 2-1: APCIe-8008-EC connections

2.2 APCI-8008 and APCIe-8008
In order to use an APCI-8008 / APCIe-8008 for EtherCAT applications, the components for the Ethernet
connection must be fitted. These include, for example, connectors X7 and X9, which represent the Ethernet
interfaces. For the connection of the APCI-8008 to the EtherCAT bus, the break-out board BOB-3100 must
be used. The following compounds are to be prepared:

APCI-8008 X7 (ETH0)  BOB-3100 X11 X1 Ethernet connection for possible Internet

 connection
APCI-8008 X9 (ETH1)  BOB-3100 X12 X2 EtherCAT connection
APCI-8008 X10 (RS232)  BOB-3100 X13 X3 serial interface BOB-3100

Notice: The Ethernet connections to X7 and X9 of the APCI-8008 must be made with the supplied ribbon
cables, since standard cables do not guarantee the necessary characteristic impedance. Any jumpers in
connectors X7 and X9 must be removed before using the connector.

APCI-8008-EC 7

2.3 Location of the connectors on BOB-3100 and APCI-8008
Figure 2-2: BOB-3100 connections

8 APCI-8008-EC

Figure 2-3: APCI-8008 connections

APCI-8008-EC 9

3 Software requirements
The APCI-8008-EC must be configured so that Linux and the Linux version of the APCI-8008 RWMOS.ELF
run on the board. This version boots automatically after switching on the PC or after a system reset in
fwsetup.exe.
The call of the DLL function BootFile is not allowed here and leads to a system failure.

As with the standard version of the APCI-8008, different RWMOS variants also exist for the EC version.
Here, an update via an FTP server is possible. To do this, X7 of the APCI-8008-EC must be connected to
X11 of the BOB-3100. The network connection for Internet access is made at connector X1 of the BOB-3100
(RJ-45).

Notice: When booting the APCI-8008-EC Linux kernel, the network connection must already exist;
otherwise, no Internet update is possible in the respective session.

10 APCI-8008-EC

4 Commissioning of the EtherCAT system

4.1 fwsetup.exe program

4.1.1 fwsetup monitor screen – HVC0 tab

In contrast to the so-called monitor screen in the standard version of the APCI-8008, the HVC0 tab is
available here in fwsetup. This represents a Linux console, with which the Linux kernel of the APCI-8008-EC
can be accessed. Alternatively, the board can also be accessed via Telnet using a terminal program.
The required IP address can be determined on the HVC0 tab via ifconfig. Per user root, the login can be
done with the default password “mcu”.
With a terminal program, you have the option of a larger display because fwsetup truncates characters
outside the display area. Nevertheless, access via fwsetup is sufficient for many applications.

Notice: You can make the truncated areas visible by transferring the monitor content to the clipboard (with
the mouse button: "Copy to ClipBoard") and pasting the clipboard into an editor.

4.1.1.1 Displaying RWMOS version and options

The diagnosis of the used RWMOS variant can be done with the following command:

/opt/mcu/info.sh

This returns e.g. the following output:

Fri Sep 14 10:05:05 CEST 2018
This is rwmoslkm with build number 2.5.3.144-5e77b1c, created at Sep 14 2018 09:26:29.
Compiled in options are: APCI-8008-LINUX [3C5, 18A, EV, SSI, RESOURCE, SCANNER, ELCAM, GEAR,
SPLINE, TC, LANGHAM, EXTENDED_DIAG, PIDFIDLE, MULTICONTROL, EC].
Up to 5 axis are supported, cycle time is: 1000 micro seconds.

Here, the characteristic and prerequisite for the EtherCAT option is the operating system option "EC".

4.1.1.2 Further fwsetup diagnostic options

At this point, there are many input options for system configuration and diagnosis, such as the EtherCAT
status display:
 ethercat diag

A grouped description of these options can be found in Chapter 6.

4.1.1.2.1 Assigning an alias address

Each slave can be assigned a unique alias address. This value is then stored as resident on the respective
slave and can be retrieved / verified when the application is started. With it, the cabling of the bus structure
can be checked, for example.

APCI-8008-EC 11

Example:

ethercat alias –p0 101

-p0 means that the alias address is assigned to the first slave in the bus.
In this example, 101 is the alias address. It is displayed in the second column via ethercat diag.
Reading the alias address during runtime is addressed with the resource Dev.# 700 hex Subindex 1 using
the universal object interface. The consecutively numbered slave position in the bus starting from 0 must be
indicated in the index.

4.1.2 fwsetup EtherCAT tab

With the aid of the TOOLSET program fwsetup.exe, the EtherCAT bus structure connected to the
APCI-8008 can be automatically detected, as long as the connected bus is in a proper state. The additional
configuration options for the bus can be made on the [Ethercat] tab. There are currently three different pages
on which important information about the current bus structure and status can be determined. Various data
contained herein are required for SAP or PCAP programming.
Click on the button to read the bus structure. This can take some time. By clicking on the plus sign of the
Device 1 node, the bus structure can be expanded. Device 1 represents the EtherCAT master of the
APCI-8008.

Figure 4-1: EtherCAT Configuration

12 APCI-8008-EC

4.1.2.1 EtherCAT page: Configuration

On the page "Configuration", the bus structure connected to the BOB-3100 can be graphically displayed in
tree form (see the following screenshot). The bus couplers (bus nodes) with device identifier and plain text
description are listed in the top hierarchy level. Underneath, the individual modules are displayed with their
specific properties such as device ID, description, access type and word size.

Figure 4-2: EtherCAT Configuration: Tree form

To activate this screen page, the operating system rwmos.elf must already be started on the board and the
bus must be connected (Online Mode, RwMos running).
The following table explains the graphical operating icons (buttons) of the screenshot above.

Table 4-1: Meaning of the icons on the [EtherCAT][Configuration] page

Icon Meaning
 Read the last determined EtherCAT configuration of the APCI-8008. The data collected during

the last EtherCAT initialisation are evaluated.
Notice: This button may only be pressed when the initialisation of the EC bus is finished. This is
generally the case when all subscribers are in operational mode. Depending on the number of
subscribers, this can take up to a minute or more.
Failure to do so may cause error messages to appear or variable names to be displayed
incorrectly (for example, "unknown"). In this case, fwsetup.exe should be stopped and restarted.

 The current device directory tree is expanded. All available information is displayed.
 The current device directory tree is collapsed. Only bus nodes are displayed.
 The current configuration can be output to a printer for documentation purposes.

APCI-8008-EC 13

4.1.2.2 EtherCAT page: SAP

On the SAP page, the bus structure connected to the BOB-3100 can be displayed in text form by clicking
on (see the following screenshot).

Figure 4-3: EtherCAT SAP

In order to activate this screen page, the operating system rwmos.elf must already be started on the board
(Online Mode, RwMos running).

14 APCI-8008-EC

4.1.2.2.1 Explanation of the graphical operating icons

The following table explains the graphical icons (speed buttons) of the screenshot shown in Figure 4-3.

Table 4-2: Meaning of the icons on the [EtherCAT][SAP] page

Icon Meaning
 see Table 4-1
 With the help of this button, the AT specifiers introduced according to IEC1131 can be copied to

the Windows clipboard for further use in an SAP program. After pressing this button, the Windows
clipboard for the above bus structure contains e.g. the following information:

 // EtherCAT declarations
 const ECBus = 600;
 const PD_DOMAIN_0 = $200;
 const PD_DOMAIN_1 = $201;

 // Slave 0 (ServoJ - Inputs)
 var Drive1_1_MPRO_402_Status : integer AT %IWECBus.PD_DOMAIN_9.10.0;
 var Drive1_1_MPRO_402_ActualTo : integer AT %IWECBus.PD_DOMAIN_9.12.0;
 var Drive1_1_MPRO_402_PositionActua : integer AT %IDECBus.PD_DOMAIN_9.14.0;
 var Drive1_2_MPRO_INPUT_S : integer AT %IDECBus.PD_DOMAIN_9.18.0;
 // Slave 1 (R88D-KN01H-ECT - Inputs)
 var Drive2_1_Error_code : integer AT %IWECBus.PD_DOMAIN_9.34.0;
 var Drive2_1_Statusword : integer AT %IWECBus.PD_DOMAIN_9.36.0;
 var Drive2_1_Position_actual_value : integer AT %IDECBus.PD_DOMAIN_9.38.0;
 var Drive2_1_Torque_actual_value : integer AT %IWECBus.PD_DOMAIN_9.42.0;
 ...

These definitions can be used for variable declaration in an SAP program.

 The current configuration can be output to a printer for documentation purposes.

APCI-8008-EC 15

4.1.2.2.2 Explanation of the screen text output EtherCAT SAP

Figure 4-4: Screen text output EtherCAT SAP

All existing EtherCAT devices are given a consecutive number (Device column). This number corresponds to
the actual position in the bus structure. The column Device-Id describes the device function. Normally, the ID
codes are unique identifiers of the EtherCAT modules in decimal and hexadecimal notation. The Name
column describes the respective module in plain text.
For SAP and PCAP programming, useful information is also contained in this screen text output. First of all,
this includes all type definitions that can be used to address the respective EtherCAT devices. The coding of
the AT-Specifiers are the declarations of the system variables for the SAP programming. If required, these
provide the necessary information for the object access by means of the PCAP programming. In the SAP
programming language, access to the I/O level is controlled using the keyword AT, based on the IEC1131
programming language (see manual “Universal Object Interface”, Chapter 2.2).
The access type (first letter after AT % (I or Q)) can be used to determine how the respective system variable
may be accessed, i.e. read (I) or write (Q) access.

Notice: For the above bus structure, there is the SAP demo program "SAP_DEMO_EtherCAT.SRC", in
which the flexible and simple EtherCAT communication is demonstrated. This program can be found on the
Toolset CD from V2.53VN.

16 APCI-8008-EC

4.1.2.3 EtherCAT page: Preferences

On the page "Preferences", you can define requirements for the names of the SAP variables.

Figure 4-5: EtherCAT Diagnostics

4.1.3 EtherCAT SAP programming

In addition to the PCAP programming method, the additional software functions of the EC option can also be
used very effectively by the SAP programming method.

Notice: The EC option should be accessed only from one task. Otherwise, it must be ensured that the EC
option is only accessed sequentially (not simultaneously) from several tasks. If this is not guaranteed, this
can lead to inexplicable runtime behaviour!

4.1.3.1 EtherCAT access to slave modules via universal object interface

The EtherCAT function can be used by reading and writing the resources detected by fwsetup. With the aid
of these variables, it is possible to communicate directly with the individual slaves. The definition of the
individual variables depends on the bus structure and is only valid as long as the bus has not been changed.
The variable access is controlled with the help of the AT mechanism, based on the IEC1131 programming
language. This is described in detail in the manual “Universal Object Interface” (Chapter 2.2). The AT
specifiers generated automatically here correspond to the process data variables (PDOs) of the respective
slave.

Notice: In the SAP user program, the EtherCAT bus should be monitored, e.g. through status queries in an
event handler routine.

APCI-8008-EC 17

4.1.3.2 Access to service data objects (SDOs)

The universal object interface allows access to service data objects of the individual slaves. However, the
individual AT specifiers must be declared manually with the help of the respective product documentation.
For this, the following guidelines apply.

For the bus number, EcBus must be indicated. For the device number, the respective slave index must be
entered. A maximum of 512 slaves are supported (0..511). On the one hand, it is of course assumed for the
use of these variables that the bus structure is strictly adhered to and not changed. On the other hand, it is
also possible to control the expected bus structure by reading out and verifying the identifier of the individual
subscribers one after the other.
For Index and SubIndex, the respective SDO index / subindex must be entered. The respective product
documentation provides information about this.

When accessing SDOs, it is important to ensure that SDOs are never accessed at the same time from
different locations, as the execution of these commands can only be completed in the following cycle. If an
ongoing access to an SDO in one task is followed by another access from another task or by PCAP, the
process is disrupted with unforeseeable consequences.

Furthermore, it is important to note that service data objects must generally not be written on cyclically. If it is
so-called backup data, which is kept resident in the flash memory of the slave when being written on,
destruction of the slave module is otherwise possible because the flash area must not be written on as often
as desired. This can be remedied e.g. by reading a variable and writing the respective initialisation value only
on it if the value is invalid.

Moreover, the following needs to be considered:
After starting the EC bus or after restructuring, read access to all SDOs in the entire EC bus takes place.
During this phase, which may take several minutes, read or write access to SDOs from a program is
practically not possible, as the respective commands are processed sequentially. Thus, a pre-initialisation of
SDOs by means of access via the universal object interface is not really suited. Instead, from RWMOS
version 2.5.3.154, there is the possibility to pre-initialise SDOs in the entire bus with the aid of a configuration
file.

4.1.3.3 EtherCAT error handling

The event handler EVEC can be used to handle EtherCAT error messages. It responds when a bus error
BEF is detected in the interface status register. This error can only be acknowledged, if at all, with a
ResetSystem command (rs) at the PCAP level. With this command, however, all SAP tasks are stopped.
The rs command should not be used at the SAP level. After executing the rs command, you have to wait until
the bus error flag has been withdrawn. Thereafter, the further program sequence can be initiated.

4.1.4 EtherCAT PCAP programming

The accesses to the individual variables of the EtherCAT area are handled via the universal object interface.
To do this, use the list of resources that can be created in fwsetup on the EtherCAT tab on the SAP tab.

4.1.4.1 Special features when accessing service data objects (SDO)

When accessing an SDO from PCAP programming, the return value of the call must always be evaluated.
As long as the return value BUSY (2) is supplied, the access is still in progress and must be repeated until
success (4) or perhaps an error is displayed.
Again, it is important to note that SDOs may only be accessed from a single location.

18 APCI-8008-EC

4.2 SDO initialisation using configuration data in a file
In order to reliably initialise SDO configuration data, the corresponding data can be indicated in the
configuration file “/etc/sdos.conf”.
This data is written on the slaves even before the Operational Mode is reached and also every time after
switching on a slave. To use these operations, specific minimum versions of the applied software are
required:

rwmos kernel module V2.5.3.154
mcug3.dll V2.5.3.131
fwsetup.exe V2.5.3.39

4.2.1 Structure of the configuration file

The configuration file is a text file that can be created with a common editor.
Data elements are organised in lines and columns. Columns are separated by spaces (blanks or tabs).
The file name and the path are predefined. Upper and lower case must be respected.

4.2.1.1 First line of sdos.conf

The first line contains an SDOSINIT identifier and the version information V1.0.

SDOSINIT V1.0

4.2.1.2 Following lines in sdos.conf

The following lines include information on the SDOs to be initialised. The respective numerical values can be
indicated in decimal or hexadecimal form preceded by 0x.

Column # Content Note
1 Slave Vendor Id Identification of an EtherCAT module
2 Slave Product

Code
Identification of an EtherCAT module

3 Revision Number Identification of an EtherCAT module;
in case of –1, the revision number is ignored

4 Slave Index Index of a module in the EC bus to be initialised (starting
with 0);
in case of –1, the index is ignored; all identified slave
modules in the bus are initialised then

5 Index SDO address “Index”
6 SubIndex SDO address “SubIndex”
7 Byte Size Word size of the SDO in bytes (1, 2 or 4)
8 Value Numerical value with which the respective SDO is initialised

Example:
0x0000066F 0x51505001 –1 –1 0x6085 0 4 100000000

4.2.1.3 Notes

Lines containing notes can be hidden with the “#” sign (without inverted commas).

APCI-8008-EC 19

4.2.2 Saving a configuration file in the APCIx-8008-EC file system

The configuration file is created under the Windows system of the host PC and can be transferred to the
motion control board using the program “fwsetup”. The file is then saved as resident in the flash file system
of the board. To do so, “fwsetup” must be called when the EtherCAT system is ready for operation.
Afterwards, a file can be searched for and installed via the “sdos.conf Installation” button under the
“Ethercat/Update” tab, and here again, on the “File Transfer” tab.
Notice: If a motion control board is replaced or the file system of a board is changed through an update
function, this file has to be restored on the board. This information must be indicated in the product
documentation.

4.3 EtherCAT diagnosis via universal object interface

The EtherCAT technology has proven to be an extremely reliable system. However, data transfers may be
disturbed through different reasons. In this chapter, possible ways of diagnosis are shown in order to detect
potential errors or handling problems.
With the EtherCAT system of the APCI-8008, it is assumed that all slaves are contained in one sync unit.
During the first start, the EtherCAT master scans the EC bus and determines the connected devices.
A software diagnosis can be made only after this process is finished.

4.3.1 Working Counters and number of detected slaves in the bus

After scanning the EC bus, the “Expected Working Counters” for domain 0 (input information) and domain 1
(output information) are available. First of all, these can be compared to the values expected from the
application and to which they must correspond. If this is not the case, the expected bus configuration is
wrong or the bus is significantly disturbed. This may occur, for example, if parts of the machine are switched
on too late. In this case, the bus configuration must be corrected and the motion control board be restarted
afterwards.
The Expected Working Counters are read with the resource Device # 900 hex, Index 1, SubIndex 0 for
domain 0 and SubIndex 1 for domain 1. Both values can be read at once using SubIndex 2, with the
Expected Working Counter of domain 0 being stored in the lower 16 bits of the function value and the
Expected Working Counter of domain 1 in the higher 16 bits (e.g. 0007 0007 hex).

If the Expected Working Counters correspond to the values required for the application, the current values of
the Working Counters can be read with the resource Device # 900 hex, Index 2, Subindex 0, 1 or 2 (see
previous paragraph). It may take some time, though, until the current values of the Working Counters
correspond to the expected values, because the slaves have to be put in the appropriate state first.
In the event that the bus is interrupted during normal operation due to failure of a slave module or
disconnection of the EC bus, for example, the current values of the Working Counters fall back immediately.
The Expected Working Counters keep the values determined at boot-up. If there are servo modules with
closed position control loops in the remaining active bus, these are instantly opened, as it has to be assumed
now that normal operation of the axis system can no longer be ensured.
If in this case of error, the expected bus structure is restored, the current Working Counters reach the
expected values again after some time. A continued operation of the whole system without any restart is
possible then.
The current values of the Working Counters never outnumber the Expected Working Counters.

By means of the resource Device # 900 hex, Index 3, SubIndex 0, the number of detected slaves in the bus
can be read. This piece of information is also an important indicator for a correct existence of the bus
structure. Compared to the current Working Counters, this value may be available with a delay. However,
this value helps to detect further slaves that are added to the bus during runtime, which is not possible by
monitoring the Working Counters.

20 APCI-8008-EC

4.3.2 Lost Frame Counter

The Lost Frame Counter is an error counter of the master module, which can be used as the first indicator for
communication problems of the hardware level. The Lost Frame Counter indicates if a data packet sent does
not return or returns damaged.
The Lost Frame Counter is read via Device # 900 hex, Index 4, Subindex 0. The error counter is an
incremental value and only reset by a restart of the system.

4.3.3 Status of the slaves in the bus

Each slave in the EtherCAT bus has a maximum of 4 EtherCAT ports at which incoming or outgoing Ethernet
data traffic is possible. For a slave in the EC bus, normally two ports are reserved; one to the master or
previous slave and one to the following slave. With the last slave in the bus or in a bus branch, only one port
is active. With a slave in the bus with a bus junction, all 4 ports are active.
For each of these ports, the EtherCAT slave provides an error counter for “Link Lost Counter”, “CRC Error
Counter” and “RX Error Counter”. These counters can be read if the slave is accessed via EtherCAT.
By analysing this information, a fault location in the EC bus can be pinpointed or narrowed down. These error
counters are accessed via Device # 900 hex according to the following table.

4.4 Reading bus and slave information
The information described below can be accessed using the universal object interface. Many elements are
only available for read operations. Access is provided via SAP or PCAP programming.
The bus number for the accesses described here is always ECBus (600 dez.). The indicated data type
always needs to be taken into account. Boolean, byte and single words are to be defined as integer in SAP
programming and to be operated via wrOptionInt or rdOptionInt in PCAP programming.
This information can be used, for example, to check the connected bus.

4.4.1 Determining general information of the slaves in the bus

In this group of variables, the access variable Index contains the index of the slave device to be accessed
(starting from 0). This is also the index that is assigned to the subscribers in the "ethercat diag" command,
for example, and that represents the order in the bus.
In SubIndex, a function number is indicated. These functions are described below.

AccessType: Read
DataType: According to the data type indicated in the following table

4.4.1.1 Dev.# 700 hex

This device number can be used to read information about the connected slaves. Write access is not
possible here.

SubIndex Name
Data type

Description

0 EXIST
integer 32 bit

This variable can be used to determine if a slave exists in the bus. If 0 is
returned, the subscriber is not available.
The index may take values from 0 to 511. The bus subscribers are listed
consecutively starting from 0. The calling function returns an error if a non-
existent slave is accessed with subsequent function numbers. The
determined parameter is invalid then.

1 ALIAS
short int 16 bit

This call returns the assigned alias address of a slave. This value can be
used, for example, to verify the bus structure or to check the bus cabling.

3 Vendor Id.
integer

This call returns the manufacturer code of the corresponding slave module.
This value can be used, for example, to verify the bus structure.

APCI-8008-EC 21

SubIndex Name
Data type

Description

4 Product Code
integer 32 bit

This call returns the product code of the corresponding slave module.
This value can be used, for example, to verify the bus structure.

8 Slave Online
integer 32 bit

Indicates if a slave is online. This value includes the content of the AL status
register of the respective slave. The value –1 indicates that currently, this
value cannot be retrieved.

64 Name
DataBuffer

This variable can be used to retrieve the module name of the respective
slave. It must be accessed via the DLL function rdOptionBuf, where the
buffer must have a size of at least 64 bytes and the name is returned as a
zero-terminated string.

4.4.2 Reading EtherCAT master information

The structure of the connected EC bus is determined when the control system is started. It comprises, for
example, the number of detected slaves and the expected and actual values for the Working Counters
concerning input and output information.

4.4.2.1 Dev.# 900 hex

This device number can be used to read information on the states of the Working Counters. Write access is
not possible here.

Index SubIndex Name
Data type

Description

1 0 32 bit Integer Expected Working Counter Domain 0 (Inputs)
1 1 32 bit Integer Expected Working Counter Domain 1 (Outputs)
1 2 32 bit Integer Expected Working Counter Domain 0+1 (Inputs + Outputs)

Lower 16 bit = WC Inputs
Higher 16 bit = WC Outputs

2 0 32 bit Integer Expected Working Counter Domain 0 (Inputs)
2 1 32 bit Integer Expected Working Counter Domain 1 (Outputs)
2 2 32 bit Integer Expected Working Counter Domain 0+1 (Inputs + Outputs)

Lower 16 bits = WC Inputs
Higher 16 bits = WC Outputs

3 - 32 bit Integer Number of detected slaves

The values of the Expected Working Counters are determined once and do not change anymore during the
session. The current values of the Working Counters are adapted every time the bus structure changes.
The expected values are not exceeded, though.
The number of the current slaves is always adapted. However, there might be a certain delay through
scanning the bus structure.

4.4.3 Reading and writing SDOs of the bus subscribers

Slave subscribers with an SDO object interface permitting SDO access enable read and write access of
these SDOs using the universal object interface. Access is possible from both SAP programming and PCAP
programming. Relevant object descriptors (or AT variables) must be created by the user on the basis of the
product documentation and the position of the respective slave modules in the EtherCAT bus.
The function returns an error if a subscriber does not allow SDO communication. In this case, the parameter
value from read operations is invalid. An error is also returned if non-existent SDOs are accessed or access
takes place with wrong data type assignment. Further information on the occurred error can be determined
via dmesg in the fwsetup terminal screen.

When writing on SDOs, the written values are usually saved as resident on the slave module. Some modules
provide a checksum which reflects changes of resident parameters. In these cases, the correct initialisation
of the slave module can be checked.

22 APCI-8008-EC

Notice: SDOs must not be written on cyclically in programs because here, writing occurs in the flash
memory of the EtherCAT slave modules. As the number of write operations is limited for this memory, the
modules may otherwise be damaged irreparably after a short time.

The respective object descriptors are to be initialised as follows:

AccessType: Read or write
DataType: According to the data type indicated in the product documentation for the slave module
BusNumber: ECBus (600 dez.)
DeviceNumber: Index of the slave module in the EtherCAT bus (according to ethercat diag)
Index: SDO index according to the product documentation for the slave module
SubIndex: SDO subindex according to the product documentation for the slave module

In this way, revision numbers, for example, and other properties of EtherCAT slave modules can also be
checked, in addition to the bus checking described in Chapter 4.4.1.

4.5 Manual reading of and writing on SDOs in the slave directory

This method is not to be confused with the mechanisms mentioned in Chapter 4.4.2. Here, it is described
how the user can access internal variables of EtherCAT slave modules by operating the system manually
during the setup phase. This operation occurs in the terminal window of the fwsetup program.

ethercat upload –p? 0xAAAA B

ethercat download –p? 0xAAAA B Wert

Option –t

For this, see also Chapter 6.3.

Explanations on the above commands:
-p? The ? stands for the index of the slave module in the EtherCAT bus, which is displayed, for
 example, via ethercat diag.
0xAAAA Hexadecimal object address
B Subindex of the object; here, too, it should be noted whether the information is decimal or

hexadecimal. You can also enter hexadecimal numbers preceded by 0x.
Wert Numerical value to be written if necessary; this can be specified in decimal or hexadecimal

form (preceded by 0x).

APCI-8008-EC 23

4.6 Commissioning of axes in mcfg.exe

4.6.1 Assignment of the motor axes

First, the axes of the system must be assigned to the existing axis types in the EtherCAT bus. This is done
on the system data page, namely, in the "Motor Types {mt}" selection on the "Axis Specific Parameters" tab.
For EtherCAT axes, the entries "EtherCAT (csp)", "EtherCAT (csv)" and "EtherCAT (cst)" are available here.
The respective capability of the devices or the implementation in the operating system software of the
APCI-8008 has to be considered for this.

The order of assignment must correspond to the order of the assigned axes in the bus, but must not be
complete in the assignment. Thus, it is also possible to operate EtherCAT axes mixed with standard servo or
stepper axes.

Figure 4-6: Assignment of an EtherCAT axis to the first axis in mcfg

4.6.2 Setting the actual value resolution

Also with EtherCAT axes, the resolution of the encoder system "Encoder Slits or Step Pulses {slsp}" must be
found in the documentation or be read from the bus and entered here manually. The counter unit of {slsp} is
usually "Pulses" because the possible electronic quadrupling always takes place in the EtherCAT module.
The DS-402 profile contains the resolution of the encoder system in object 0x608F:1. This is a 32-bit integer
variable.
According to Chapter 4.2, this variable can e.g. be read with the following command in the fwsetup monitor
screen:

ethercat upload –p2 –tint32 0x608f 1

–p2 means that the variable is read from the slave with the index 2.
–tint32 means that the data type int32 is expected.

Notice: It is necessary to distinguish between the real resolution of the position encoder and the resolution
provided by the EtherCAT slave. This generally does not have the same value. Precise information on how
to determine the resolution must be provided by the manufacturer's documentation.

24 APCI-8008-EC

4.7 Further EtherCAT-specific handling of the system

4.7.1 Restart of the boards via BootFile

Since September 2021 (mcug3.dll V2.5.3.133), it is possible to restart the whole system using the DLL
function BootFile (). The board is reset then like when booting the PC or with the reset button in fwsetup.
But this step may only be carried out if no other programs are accessing the system.
The reboot process may take quite long. Work with the board can only be continued when InitmcuSystem?
returns the value 0.

4.7.2 Transferring the dmesg protocol into the Windows file system

From mcug3.dll V2.5.3.133 and rwmos version V2.5.3.159, it is possible to read the dmesg protocol of the
motion control board via DLL function. The protocol content on the board is thus rejected.
So, the user is provided with the Information which is otherwise displayed in the fwsetup monitor, with the
dmesg command. This information can be used for the system diagnosis.

DLL function in C:

int rdDmesg (char *filename);

Parameter: File name with optional drive and path specification

Return values:
 >= 0 For success; the number of bytes read is returned.
 -1 Function in RWMOS not available
 -33 RWMOS is no EtherCAT type.
 -38 No motion control board detected in the system
 -53 Error while opening the indicated file in Windows
 -54 Internal error / Memory problem

Notice: The different lines are separated by LineFeed, not by CarriageReturn.

APCI-8008-EC 25

5 Drive-specific properties
For each drive system contained in the APCI-8008-EC, there are specific settings that must be considered
when using a drive.
For example, there are no longer shared digital inputs and outputs. Instead, the digital inputs and outputs
available on a drive are mapped in the digi or digo word of the respective axis. The assignment of the
inputs/outputs to the single bits is documented below for each drive. Independently of that, all bits of the
different EtherCAT registers can be accessed through the universal object interface as far as they are
transferred cyclically via PDO (see Chapter 4.1.2.2.2).
Moreover, the Touch Probe functions which allow for position latch are configured and assigned to the latch
functionality of the APCI-8008-EC. Thus, in general, a position latch is possible via digital input and via zero-
trace signal as with previous boards.

Notice: Signal inversion / edge inversion with Touch Probe signals is not possible as before!

5.1 Omron servo drives

5.1.1 Accurax G5 drives

5.1.1.1 Operating modes

This device can be operated in the operating modes csv, csp and cst.

5.1.1.2 Digital inputs

Signal Bit# digi word

5.1.2 Digital outputs

Signal Bit# digo word

5.1.3 Touch Probe function / Latch functionality

Touch Probe
channel

Source / Trigger Edge Mode

26 APCI-8008-EC

5.1.4 Sysmac 1S servo drives

5.2 Panasonic MADHT1505

5.2.1 Operating modes

This device can be operated in the operating modes csv, csp and cst.

5.2.2 Digital inputs

Signal Bit# digi word
NOT 0 negative limit switch
POT 1 positive limit switch
HOME 2 home switch
SI-MON1 3 Latch Input EXT1
SI-MON2 4 General Purpose
SI-MON3 5 General Purpose
SI-MON4 6 General Purpose
SI-MON5 7 Emergency Stop E-STOP /

General Purpose
INP 8 Positioning Complete

5.2.3 Digital outputs

Signal Bit# digo word
EX-OUT1 0

5.2.4 Touch Probe function / Latch functionality

Touch Probe
channel

Source / Trigger Edge Mode

1 EXT1 positive Continous Triggering
2 Z-phase positive Trigger First Event

The flag NDX (Bit # 16) in the digi word cannot be used for this device because the EtherCAT bus does not
provide any corresponding signal. For referencing, only the latched position can be used.

5.2.5 Quick Stop Deceleration (Object 6085 hex)

Here, a reasonable acceleration value must be entered in Counts / s2 via SDO access. This value must
ensure that in case of error, the axis comes to a standstill after an adequate time. At a high encoder
resolution, the default value of this object (1 000 000) is too low so that the axis may take too much time to
stop.
This value becomes relevant when the EC bus is disconnected behind the respective slave during operation.
The motion control board initialises a quick stop then (in csv and cst operation).

APCI-8008-EC 27

6 Configuration and diagnosis in the APCI-8008 console

6.1 Customisation of manufacturer-specific XML files for use with the
APCI-8008

6.1.1 SM=??

This specification defines the SyncManager with which PDOs are transmitted cyclically. Registers that are
read from the EtherCAT slave must be assigned to the SyncManager "3"; registers to be written to the
EtherCAT slave, are assigned to the SyncManager "2".

6.1.2 Additions to PDOs

For this, exact knowledge of the manufacturer-specific object directory is necessary. Objects which are
stored as resident on the slave must never be written cyclically; otherwise, the module would be damaged
within a short time.

6.2 Restarting the EtherCAT module
Stop RWMOS with:
 rwmoslkm stop

Restart of the EtherCAT module:
 /etc/init.scrips/ethercat restart

Then RWMOS must be restarted:
 rwmoslkm start

28 APCI-8008-EC

6.3 EtherCAT SDOs

The description of EtherCAT SDOs (Service Data Objects) of the respective slave module can be found in
the corresponding product documentation. An SDO is defined by its index and subindex. Writing on SDOs
may not be possible in the operational state of the slave module. In this case, the PreOperational State can
be forced by clicking on the Pre-Op button in the shown view of fwsetup:

Figure 6-1: Pre-Op button

The RWMOS module of the motion control board can be stopped or restarted within Linux.

Starting and stopping the RWMOS module:

 rwmoslkm stop

In this case, a restart is necessary afterwards, which can be initiated as follows:

 rwmoslkm start

A hexadecimal index is represented below as 0xXXXX; a subindex as YY.

The reading of and writing on SDOs is performed with the following commands:

 ethercat upload
and
 ethercat download

APCI-8008-EC 29

Reading and displaying an SDO:

 ethercat upload –p? 0xXXXX YY

The ? here represents the index of the slave component to be addressed.

Example for reading and displaying:

[root@MCU:~]# ethercat upload -p1 0x1c13 1
0x1a00 6656

The read value is output in hexadecimal and decimal form.

Example for writing on the SDO:

[root@MCU:~]# ethercat download -p1 0x1c13 1 0x1a00

Here, information is displayed only in case of error.

Optionally, sometimes a data type can or must be specified with the –t parameter.

Example:

[root@MCU:~]# ethercat download -p1 0x1c13 1 0x1a00 –tint32

A list of available data types can be displayed by calling the command without parameters:

ethercat upload
or

ethercat download

30 APCI-8008-EC

7 Appendix

7.1 Pitfalls when setting up the system
 One or more axes do not go into the operational state; the EtherCAT bus LED flashes.

The reason may be that the EtherCAT axes defined in mcfg do not match the actual axes in the bus.
The unassigned axes are then initialised as not valid.
In this case, in the dmesg protocol, messages are displayed in the following form:
EtherCAT WARNING 0-0: CoE Emergency Request received:
Error code 0xFF1E, Error register 0x80, data

 When setting up the system data, attention must be paid to the setting in "Maximum / Minimum
output Voltage" on the "Motor specific parameters" tab. Non-EtherCAT systems typically have a
value of +/- 10 volts here. For EtherCAT systems, this value has a completely different meaning, e.g.
in the unit of digits/second, and may take values of e.g. +/- 2e23. This corresponds to +8,388,607
and -8,388,608.

 Generating the SAP resource identifiers generates elements with unauthorised domains. It must be
ensured here that all EtherCAT slaves are in the operational state when the SAP identifiers are
generated.

 In the SAP variable declarations, the names of the AT specifiers contain peculiar, meaningless
names, sometimes with the word "unknown".
The reason for this is that in the supplied manufacturer's XML files not all of the PDOs required by
the motion control board are written on. If necessary, a specially extended XML file must be used or
an existing XML file be modified.

 At the start, the following error message is displayed in the fwsetup monitor screen:
 Failed to calculate Bus Topologie.
The reason for this may be an error in bus cabling if, for example, a bus cable has not been
connected to the EtherCAT input but to the EtherCAT output of a slave.

APCI-8008-EC 29

7.2 Implemented devices

7.2.1 I/O modules

Beckhoff EL1014
Beckhoff EL1804
Beckhoff EL1809
Beckhoff EL2004
Beckhoff EL2202
Beckhoff EL2809
Beckhoff EL2828
Beckhoff EL3064
Beckhoff EL3102
Beckhoff EL3255
Beckhoff EL4002
Beckhoff EL4132
Beckhoff EL5101
Beckhoff EL7211
Beckhoff EK1814
Beckhoff EP2316

ADDI-DATA MSX-EC-1730-16
ADDI-DATA CS-MAT-3001-16-EC

7.2.2 Drives

CopleyControl AEP_180_18
CopleyControl XEL_230_13
HIWIN D1N
KOLLMORGEN AKD
Lti ServoJ
Omron R88D KN01H_ECT
 KN04H ECT
 KN08H ECT
 KN15F ECT
 KN20F ECT
 KN30F ECT
 1SN01H ECT
Rexrot IndraDriveCS HSC01_1E_W0018

Beckhoff EL7211

Panasonic MADHT1505
Panasonic MADHT1507
Panasonic MADHT2510

Further devices may be added any time.

32 APCI-8008-EC

7.3 Figures

Figure 2-1: APCIe-8008-EC connections ... 6
Figure 2-2: BOB-3100 connections .. 7
Figure 2-3: APCI-8008 connections ... 8
Figure 4-1: EtherCAT Configuration ... 11
Figure 4-2: EtherCAT Configuration: Tree form ... 12
Figure 4-3: EtherCAT SAP ... 13
Figure 4-4: Screen text output EtherCAT SAP ... 15
Figure 4-5: EtherCAT Diagnostics .. 16
Figure 4-6: Assignment of an EtherCAT axis to the first axis in mcfg .. 23
Figure 6-1: Pre-Op button ... 28

7.4 Tables

Table 4-1: Meaning of the icons on the [EtherCAT][Configuration] page .. 12
Table 4-2: Meaning of the icons on the [EtherCAT][SAP] page ... 14

	1 EtherCAT master
	1.1 Brief description

	2 Hardware requirements
	2.1 APCIe-8008-EC
	2.2 APCI-8008 and APCIe-8008
	2.3 Location of the connectors on BOB-3100 and APCI-8008

	3 Software requirements
	4 Commissioning of the EtherCAT system
	4.1 fwsetup.exe program
	4.1.1 fwsetup monitor screen – HVC0 tab
	4.1.1.1 Displaying RWMOS version and options
	4.1.1.2 Further fwsetup diagnostic options
	4.1.1.2.1 Assigning an alias address

	4.1.2 fwsetup EtherCAT tab
	4.1.2.1 EtherCAT page: Configuration
	4.1.2.2 EtherCAT page: SAP
	4.1.2.2.1 Explanation of the graphical operating icons
	4.1.2.2.2 Explanation of the screen text output EtherCAT SAP

	4.1.2.3 EtherCAT page: Preferences

	4.1.3 EtherCAT SAP programming
	4.1.3.1 EtherCAT access to slave modules via universal object interface
	4.1.3.2 Access to service data objects (SDOs)
	4.1.3.3 EtherCAT error handling

	4.1.4 EtherCAT PCAP programming
	4.1.4.1 Special features when accessing service data objects (SDO)

	4.2 SDO initialisation using configuration data in a file
	4.2.1 Structure of the configuration file
	4.2.1.1 First line of sdos.conf
	4.2.1.2 Following lines in sdos.conf
	4.2.1.3 Notes

	4.2.2 Saving a configuration file in the APCIx-8008-EC file system

	4.3 EtherCAT diagnosis via universal object interface
	4.3.1 Working Counters and number of detected slaves in the bus
	4.3.2 Lost Frame Counter
	4.3.3 Status of the slaves in the bus

	4.4 Reading bus and slave information
	4.4.1 Determining general information of the slaves in the bus
	4.4.1.1 Dev.# 700 hex

	4.4.2 Reading EtherCAT master information
	4.4.2.1 Dev.# 900 hex

	4.4.3 Reading and writing SDOs of the bus subscribers

	4.5 Manual reading of and writing on SDOs in the slave directory
	4.6 Commissioning of axes in mcfg.exe
	4.6.1 Assignment of the motor axes
	4.6.2 Setting the actual value resolution

	4.7 Further EtherCAT-specific handling of the system
	4.7.1 Restart of the boards via BootFile
	4.7.2 Transferring the dmesg protocol into the Windows file system

	5 Drive-specific properties
	5.1 Omron servo drives
	5.1.1 Accurax G5 drives
	5.1.1.1 Operating modes
	5.1.1.2 Digital inputs

	5.1.2 Digital outputs
	5.1.3 Touch Probe function / Latch functionality
	5.1.4 Sysmac 1S servo drives

	5.2 Panasonic MADHT1505
	5.2.1 Operating modes
	5.2.2 Digital inputs
	5.2.3 Digital outputs
	5.2.4 Touch Probe function / Latch functionality
	5.2.5 Quick Stop Deceleration (Object 6085 hex)

	6 Configuration and diagnosis in the APCI-8008 console
	6.1 Customisation of manufacturer-specific XML files for use with the APCI-8008
	6.1.1 SM=??
	6.1.2 Additions to PDOs

	6.2 Restarting the EtherCAT module
	6.3 EtherCAT SDOs

