

Last updated: 31/03/2021, from disk V2.53VP
Rev. 15/052022

www.addi-data.com

POSITIONING AND CONTOURING
CONTROL SYSTEM

APCI-8001 AND APCI-8008

PROGRAMMING AND
REFERENCE MANUAL / PM (PART 2)

CONTENTS 3

5 The rw_SymPas programming language for stand-alone application programming 7

5.1 Introduction ... 7
5.2 Lexical grammar ... 7

5.2.1 White space ... 7
5.2.2 Comments ... 7
5.2.3 Symbols ... 7

5.2.3.1 Keywords .. 8
5.2.3.2 Designators .. 8

5.2.3.2.1 Name and length restrictions .. 8
5.2.3.2.2 Designator upper and lower case ... 8
5.2.3.2.3 Unambiguity and validity of designators ... 9

5.2.3.3 Standard designators ... 9
5.2.3.4 Axis designators ... 9
5.2.3.5 Qualified designators .. 9
5.2.3.6 Labels ... 9
5.2.3.7 Constants ... 10

5.2.3.7.1 Integer constants... 10
5.2.3.7.1.1 Decimal constants.. 10
5.2.3.7.1.2 Hexadecimal constants .. 11

5.2.3.7.2 Floating-point constants .. 11
5.2.3.7.2.1 The type of floating-point constants ... 11
5.2.3.7.2.2 Declaration of constants .. 11

5.2.3.7.3 Punctuation characters ... 11
5.2.3.7.3.1 Parentheses ... 11
5.2.3.7.3.2 Comma .. 12
5.2.3.7.3.3 Semi-colon ... 12
5.2.3.7.3.4 Equals sign .. 12

5.3 Semantic grammar ... 12
5.3.1 Declarations .. 12

5.3.1.1 Objects ... 12
5.3.1.2 Types .. 13

5.3.1.2.1 Boolean type ... 13
5.3.1.2.2 Integer type ... 13
5.3.1.2.3 Floating-point types (real types) .. 13
5.3.1.2.4 Assignment compatibility of types ... 14

5.3.1.3 Variables ... 14
5.3.1.3.1 Automatic type conversion .. 14

5.3.2 Blocks, locality and range of application ... 14
5.3.2.1 Syntax ... 14

5.3.2.1.1 Declaration section ... 15
5.3.2.1.1.1 Label declaration section ... 15
5.3.2.1.1.2 Constant declaration section ... 15
5.3.2.1.1.3 Variable declaration section ... 15

5.3.2.1.2 Command section ... 16
5.3.2.2 Range of application ... 16

5.3.2.2.1 Redeclaration in a subordinate block .. 16
5.3.2.2.2 The location of a declaration in a block .. 16
5.3.2.2.3 Redeclarations inside a block ... 16
5.3.2.2.4 Standard designators .. 16

5.3.3 Variables.. 17
5.3.3.1 The declaration of variables ... 17

5.3.3.1.1 Axis-type declaration ... 17
5.3.3.1.2 Timer declaration .. 18

5.3.3.2 Conversion of variable types .. 18
5.3.4 Expressions ... 19

5.3.4.1 Syntax of expressions .. 19

4 CONTENTS

5.3.4.2 Operators .. 19
5.3.4.3 Arithmetical operators .. 20
5.3.4.4 Logic operators ... 20
5.3.4.5 Boolean operators .. 21
5.3.4.6 Relational operators ... 21

5.3.5 Statements .. 21
5.3.5.1 Assignments ... 22
5.3.5.2 Procedure or function calls ... 22
5.3.5.3 The goto statement .. 22
5.3.5.4 Structured instructions .. 22
5.3.5.5 Compound statements ... 22
5.3.5.6 Conditional statements ... 23

5.3.5.6.1 The if statement .. 23
5.3.5.7 Loops .. 23

5.3.5.7.1 The while statement .. 24
5.3.5.7.2 The repeat statement .. 24
5.3.5.7.3 The for statement .. 24

5.3.6 Procedures and functions.. 24
5.3.6.1 Procedure declarations .. 25
5.3.6.2 Function declarations ... 25

5.3.7 The syntax of an rw_SymPas program ... 26
5.3.7.1 The program descriptor .. 27
5.3.7.2 The program block ... 27

6 Stand-alone application programming .. 28

6.1 Introduction ... 28
6.2 rw_SymPas example programs ... 28
6.3 Abbreviations, system parameters, axis specifiers and axis qualifiers .. 28

6.3.1 System parameters ... 28
6.3.1.1 PC interrupt generation .. 30
6.3.1.2 System parameters for unit processing .. 30
6.3.1.3 ERRORREG ... 31
6.3.1.4 ControllerFlags ... 31
6.3.1.5 MODEREG ... 32

6.3.2 Axis specifiers ... 34
6.3.3 Axis qualifiers .. 35
6.3.4 Structured axis qualifiers ... 37
6.3.5 Abbreviations ... 38

6.4 Reserved procedure names with event function .. 38
6.4.1 Event procedure EVEO ... 38
6.4.2 Event procedure EVDNR .. 39
6.4.3 Event procedure EVLSH ... 39
6.4.4 Event procedure EVLSS ... 39
6.4.5 Event procedure EVMPE .. 39
6.4.6 Event procedure EVUI ... 39
6.4.7 Priority and processing sequence for the event procedures ... 39

6.5 SAP block commands .. 40
6.6 rw_SymPas SAP command reference list ... 40

6.6.1 Structure of the reference list .. 40
6.6.2 ABORT, abort .. 40
6.6.3 ABS, absolute function .. 41
6.6.4 ACOS, arc cosine function .. 41
6.6.5 ASIN, arc sine function .. 41
6.6.6 ATAN, arc tangent function ... 41
6.6.7 AZO, activate zero offsets ... 41
6.6.8 CL, close loop .. 42

CONTENTS 5

6.6.9 CLV .. 42
6.6.10 CONTCNCT, continue CNC-Task ... 42
6.6.11 COS, cosine function ... 42
6.6.12 COSH, hyperbolic cosine function .. 43
6.6.13 DISEV, disable event .. 43
6.6.14 ENEV, enable event .. 43
6.6.15 EXP, exponential function ... 43
6.6.16 JA, jog absolute ... 43
6.6.17 JAW, jog absolute waiting ... 44
6.6.18 JHI, jog home index ... 44
6.6.19 JHIW, jog home index waiting ... 44
6.6.20 JHL, jog home left ... 45
6.6.21 JHLW, jog home left waiting .. 45
6.6.22 JHR, jog home right ... 45
6.6.23 JHRW, jog home right waiting ... 45
6.6.24 JR, jog relative ... 45
6.6.25 JRW, jog relative waiting ... 46
6.6.26 JS, jog stop .. 46
6.6.27 JSW, jog stop waiting .. 46
6.6.28 LN, natural logarithm function ... 46
6.6.29 LPR, latch position registers ... 46
6.6.30 LPRS, latch position registers synchronous .. 47
6.6.31 MCA, move circular absolute - SMCA, spool motion circular absolute 47
6.6.32 MCAW, move circular absolute waiting ... 47
6.6.33 MCA3D, move circular absolute three-dimensional SMCA3D, spool move circular

absolute three-dimensional ... 47
6.6.34 MCA3DW, move circular absolute three-dimensional waiting .. 47
6.6.35 MCR3D, move circular relative three-dimensional SMCR3D, spool move circular relative

three-dimensional .. 48
6.6.36 MCR3DW, move circular relative three-dimensional waiting .. 48
6.6.37 MCR, move circular relative - SMCR, spool motion circular relative 48
6.6.38 MCRW, move circular relative waiting .. 48
6.6.39 MHA, move helical absolute - SMHA, spool motion helical absolute 48
6.6.40 MHAW, move helical absolute waiting .. 49
6.6.41 MHR, move helical relative - SMHR, spool motion helical relative 49
6.6.42 MHRW, move helical relative waiting .. 49
6.6.43 MLA, move linear absolute - SMLA, spool motion linear absolute 49
6.6.44 MLAW, move linear absolute waiting .. 49
6.6.45 MLR, move linear relative - SMLR, spool motion linear relative 49
6.6.46 MLRW, move linear relative waiting .. 50
6.6.47 MS, motion stop .. 50
6.6.48 MSW, motion stop waiting ... 50
6.6.49 OL, open loop .. 50
6.6.50 POWER 50
6.6.51 RA, reset axis .. 51
6.6.52 RDCBD, read COMMON BUFFER double function ... 51
6.6.53 RDCBI, read COMMON BUFFER integer function ... 51
6.6.54 RDCBS, read COMMON BUFFER single function ... 52
6.6.55 RPTODP, Real-Position to Desired-Position .. 52
6.6.56 RS, reset system ... 52
6.6.57 SHP, set home position ... 52
6.6.58 SIN, sine function .. 53
6.6.59 SINH, hyperbolic sine function .. 53
6.6.60 SQR, square function .. 53
6.6.61 SQRT, square root function... 53
6.6.62 SSF, Spool-Special-Function .. 54
6.6.63 SSMS, start spooled motions synchronous .. 54

6 CONTENTS

6.6.64 SSMSW, start spooled motions synchronous waiting ... 54
6.6.65 STARTCNCT, start CNC-Task .. 55
6.6.66 STOP, stop .. 55
6.6.67 STEPCNCT, step CNC-Task .. 55
6.6.68 STOPCNCT, stop CNC-Task .. 56
6.6.69 STOPTOSS ... 56
6.6.70 SZPA – Set Zero Position Absolut .. 56
6.6.71 SZPR – Set Zero Position Relativ ... 57
6.6.72 TAN, tangent function .. 57
6.6.73 TANH, hyperbolic tangent function ... 57
6.6.74 UF, update filter ... 57
6.6.75 UTROVR, update trajectory override .. 58
6.6.76 WRCBI, write COMMON BUFFER integer procedure .. 58
6.6.77 WRCBS, write COMMON BUFFER single procedure .. 58
6.6.78 WRCBD, write COMMON BUFFER double procedure ... 59
6.6.79 WRITE 59
6.6.80 WRITELN 60
6.6.81 WT, wait timer ... 60

6.7 Compiler commands .. 61
6.7.1 Include file ... 61
6.7.2 Task selection ... 61
6.7.3 Full system compiling .. 61

6.8 SAP runtime errors ... 62

7 PM / PROGRAMMING AND REFERENCE MANUAL

5 The rw_SymPas programming language
for stand-alone application programming

5.1 Introduction
rw_SymPas is a programming language for creating autonomously running CNC programs (stand-alone
application programs) for the APCI-800x positioning control system. The lexical and semantic grammar of
rw_SymPas is very similar to that of the Pascal programming language.

5.2 Lexical grammar

This chapter contains a formal definition of the lexical grammar used in rw_SymPas. This deals with the
word-like units of a language, referred to as »symbols« or »tokens«. The semantic grammar determines the
rules by which symbols can be combined to form expressions, statements or other units.
In rw_SymPas, the symbols are obtained as a result of the operations performed by the NCC compiler with
the user program. An rw_SymPas program is a sequence of ASCII characters representing the source code
and written with a text editor (e.g. CNC-Edit). The basic program unit in rw_SymPas is the file, which
corresponds to a named DOS file in the memory or on the disk and has the extension ".SRC".

5.2.1 White space

In the lexical analytical phase of compiling, the source code file is parsed (broken down) into symbols and
»white space«. White space is the collective term for characters categorized as separators: blanks, tabs, line
breaks and comments. White space is used for marking the beginning and end of a symbol; but apart from
this, white space is ignored.

5.2.2 Comments

Comments are text lines containing explanations on the program. They are removed from the source text
prior to parsing.
An rw_SymPas comment is a character string located after the character "{". The comment ends at the first
occurrence of the "}" character following the start symbol "{". Comments cannot be nested.
There is also an option for creating a one-line comment with two slashes "//". The comment can begin at any
point and extends up to the next line.

5.2.3 Symbols

rw_SymPas recognizes the following kinds of symbol

 Symbol:
 Keyword
 Designator
 Qualified designator
 Labels
 Constant
 Operator
 Punctuation character (including separators)

8 PM / PROGRAMMING AND REFERENCE MANUAL

5.2.3.1 Keywords

Keywords are words reserved for special purposes, which may not be used as normal designator names.
The table below lists all the rw_SymPas keywords.

Table 21: All rw_SymPas keywords

and begin boolean const
do double downto else
end for forward function
goto if integer label
mod module not or
procedure repeat shl shr
single then timer to
until var while xor

5.2.3.2 Designators

Designators can consist of the following elements:

 Designator
 Non-figure
 Designator non-figure
 Designator figure

Non-figure: one of the following characters

a b c d e f g h i j k l m n o p q r s t u v w x y z _
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Figure: one of the following characters

0 1 2 3 4 5 6 7 8 9

Examples:

 A, AA, AB, A1, A2, _A // valid
 1A, ?B // invalid

5.2.3.2.1 Name and length restrictions

Designators can be any names of any length for variables, procedures, functions, label names, etc. Designators
may contain the letters A to Z, a to z, the underscore and the figures 0 to 9. However, the following restrictions
apply:

• The first character must be a letter or an underscore.
• Only the first 32 characters are significant. If the designator contains more than 32 characters, the

remaining characters are ignored. In the case of large rw_SymPas programs, you should keep to short
names, so as not to overload the PC's main memory.

5.2.3.2.2 Designator upper and lower case

rw_SymPas distinguishes between upper and lower-case letters, so that Position, position and positioN are
different designators.

9 PM / PROGRAMMING AND REFERENCE MANUAL

5.2.3.2.3 Unambiguity and validity of designators

Designators can be any names which conform to the applicable rules. Errors may, however, occur if the
same name is used inside the same range of application for several different designators having the same
name range. Identical names are permissible for different name ranges, irrespective of the range of
application involved. The definition of a designator range of application is explained in chapter 5.3.2.2.

5.2.3.3 Standard designators

rw_SymPas already has a series of predefined designators, which are accordingly referred to as "standard
designators". All rw_SymPas standard designators are listed in the table below.

Table 22: All standard designators predefined rw_SymPas

abort Cl contcnct disev
enev Ja jaw jhi
jhiw Jhl jhlw jhr
jhrw Jr jrw js
jsw Mca mcaw mcr
mcrw Mha mhaw mhr
mhrw Mla mlaw mlr
mlrw Ms msw ol
ra Rs shp smca
smcr Smha smhr smla
smlr Ssms ssmsw startcnct
stop Stopcnct uf wt
utrovr

5.2.3.4 Axis designators

Each axis channel is referenced using a symbolic name. This name can be freely chosen by the user, with
up to 8 characters. These axis designators are likewise incorporated in the standard designator list by
rw_SymPas.

Note: Automatic declaration of the axis designators deviates from Standard Pascal.

5.2.3.5 Qualified designators

Referencing to designators of the same name which have been declared for different axis systems (by
rw_SymPas) is handled in a qualifying routine by prefixing the axis designator.
Examples:

A1.digo := 0; // Reset all outputs of APCI-800x
A2.digo := $FFFFFFFF; // Set all outputs of APCI-800x

Note: Variable referencing to qualified designators deviates from Standard Pascal.

5.2.3.6 Labels

The same rules apply for the structure of a label as for the designators. Labels are used solely in connection
with the goto statement.

10 PM / PROGRAMMING AND REFERENCE MANUAL

5.2.3.7 Constants

Constants are symbols which stand for fixed numerical values. rw_SymPas knows two classes of constants:
floating-point and integer. A constant's data type is derived by the NCC compiler on the basis of its numerical
value and its format in the source text. Table 23 shows the formal definition of a constant

Table 23: Formal definition of a constant.

Constant:
 Floating-point constant

 Integer constant
Floating-point constant:
 Fractional constant<exponent>

 Digit string exponent
Fractional constant:
 <Digit string>.Digit string

 Digit string.
Exponent:
 e<sign>Digit string

 E<sign>Digit string
Sign: one of the following characters

+ -
Digit string:
 Digit

 Digit string digit
Integer constant:
 <sign>Decimal constant

 Hexadecimal constant
Decimal constant:
 Digit

 Decimal constant digit
Hexadecimal constant:
 $ Hex digit

 Hexadecimal constant hex digit
Digit:
 0 1 2 3 4 5 6 7 8 9
Hex digit:
 0 1 2 3 4 5 6 7 8 9
 a b c d e f
 A B C D E F

5.2.3.7.1 Integer constants

Integer constants can be decimal (base 10) or hexadecimal (base 16) numbers. Remember that different
rules apply for decimal and non-decimal constants.

5.2.3.7.1.1 Decimal constants

Decimal constants of -2147483648 to 2147483647 are permitted. Constants outside this range will
automatically be limited to the appropriate minimum or maximum value.

11 PM / PROGRAMMING AND REFERENCE MANUAL

5.2.3.7.1.2 Hexadecimal constants

All constants which begin with the dollar sign ($) are interpreted as hexadecimal constants. Hexadecimal
constants of $80000000 to $7FFFFFFF are permitted. Constants outside this range will be limited to the
appropriate minimum or maximum value.

5.2.3.7.2 Floating-point constants

A floating-point constant is made up of 4 constituents:
  Places before the decimal point
  Decimal point
  Decimal places
 e or E and a signed integer exponent (optional))

You can omit either the places before the point or after it (but not both). The decimal point or the letter e (E)
can be omitted (but not both). These rules enable you to use both the conventional and the scientific notation
(with exponents).

5.2.3.7.2.1 The type of floating-point constants

Floating-point constants are always handled as double values. They are filed in a double word (8 bytes) in
accordance with IEE. The range is 1.7*10-308 to 1.7*10308.

5.2.3.7.2.2 Declaration of constants

A constant declaration agrees a designator, which inside the block concerned stands for a constant value.
An example of a constant declaration is:

const one = 1;

Signed constants stand for an integer or floating-point value. Computation of constants is not possible.

5.2.3.7.3 Punctuation characters

Punctuation characters (also referred to as separators) are defined in rw_SymPas as follows:

 Punctuation characters: one of the following symbols
 () , ; : =

5.2.3.7.3.1 Parentheses

Parentheses () group expressions together, isolate conditional expressions and represent procedure calls
and procedure parameters:

d := c * (a + b); // Alter the normal sequence
if (d = z) then ... // Required with a conditional
 // statement
proc() // Procedure call without arguments

12 PM / PROGRAMMING AND REFERENCE MANUAL

5.2.3.7.3.2 Comma

The comma (,) separates the elements in a procedure argument list:

mlr (A1, A2);

5.2.3.7.3.3 Semi-colon

The semi-colon (;) is used as the end criterion for a statement. Every valid rw_SymPas expression (including
an empty expression) with a semi-colon at its end will be interpreted as a statement (expression statement).

5.2.3.7.3.4 Equals sign

The equals sign (=) separates constant declarations from the initialization values:

const one = 1.0;

5.3 Semantic grammar
This chapter will explain the formal definition of the rw_SymPas language structure. This semantic grammar
determines the rules by which symbols can be combined to form expressions, statements or other
meaningful units.

5.3.1 Declarations

The following section provides a brief summary of subjects involving declarations: objects, types, blocks,
locality and range of application. Locality and range of application define those parts of the program from
which the object linked to the designator can permissibly be accessed.

5.3.1.1 Objects

An object is an identifiable memory area in which a fixed or variable value (or a quantity of values) is located.
Each object has a name and a type (referred to as the "data type"). An object is accessed over its name.
This name can be a simple designator or a complex expression which unambiguously indicates an object.
The type is used in order to:

• specify the correct memory reservation required at the beginning
• check the types so as to ensure that correct assignments are made

The predefined types of rw_SymPas include the Boolean data type, integer numbers with sign and floating-
point numbers with differing accuracy.
Declarations establish the link between designators and objects. Each declaration links a designator to a
data type. In addition, most declarations (referred to as the "definition declarations") also determine the
generation of the object (where and when) and handle assignment of the memory location.

13 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.1.2 Types

Every declaration of a variable has to specify the type of this variable. The type specifies the value range of
the variable concerned and determines the operations which can be performed with it. Thus a type definition
agrees a designator, which in turn stands for a particular type.

Type declaration:
 Designator = Type;

Type:
 Boolean type
 Integer type
 Floating-point type

5.3.1.2.1 Boolean type

The Boolean data type can assume only one of the predefined values FALSE or TRUE. Note that the
following relations apply:

 • FALSE < TRUE
 • Ordinal number of FALSE = 0
 • Ordinal number of TRUE = 1

5.3.1.2.2 Integer type

rw_SymPas provides the integer types Integer and Timer.

Table 24: The integer type and its value range

Type Range Format
Integer -2147483648 .. 2147483647 32 bits with sign
Timer 0 .. 4294967295 32 bits without sign

5.3.1.2.3 Floating-point types (real types)

rw_SymPas knows two different kinds of floating-point types: Single and Double. These types differ from
each other both in their value ranges and in the accuracy of operations performed with them.

Note: Occasionally the term "real type" is also used for "floating-point type".

Table 25: The floating-point types and their accuracy

Type Range Format
Single -1.2e-38.. 3.4e38 7 to 8 places
Double -2.2e-308 .. 1.8e308 15 to 16 places

14 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.1.2.4 Assignment compatibility of types

Assignment compatibility is essential if a value is to be assigned. The value of a type T2 can be assigned to a
value T1 (i.e. T1:=T2), if one of the following conditions is satisfied:

 • T1 and T2 are of the same type.
 • T1 has the type double, T2 the value integer or single.
 • T1 has the type single, T2 the value integer.

If none of these conditions is satisfied, but assignment compatibility is required, the NCC compiler will report
an error.

5.3.1.3 Variables

5.3.1.3.1 Automatic type conversion

rw_SymPas executes an automatic type conversion function if there are different types in one expression.
Conversion is performed as follows: integer to single or integer and single to double. For example:

...
Var
 i : Integer;
 s : Single;
 d : Double;
...

d := s * i; // s and i are automatically converted to double

s := i; // i is automatically converted to single

5.3.2 Blocks, locality and range of application

A block consists of declarations and statements arranged at will. Each block is part of a procedure
declaration or of a program. All designators and labels in the block's declaration section are restricted in their
effect to this block - they are local to this block.

5.3.2.1 Syntax

The syntactic structure of each block can be represented as follows:

Block:

Declaration section
Command section

15 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.2.1.1 Declaration section

Declaration section:
Label declaration section
Constant declaration section
Variable declaration section
Declaration section label declaration section
Declaration section constant declaration section
Declaration section variable declaration section

5.3.2.1.1.1 Label declaration section

In the Label declaration section, all labels are agreed which are to represent goto jump destinations in the
command section of the block involved. Each label may be defined once only inside the command section
(i.e. each goto must have an unambiguous destination).

Structure of the label declaration section:

 label Labels;

Labels:

LabelName
Labels, LabelName

5.3.2.1.1.2 Constant declaration section

The declaration section for constants contains all agreements for constants which are local to the block
involved.

Structure of the constant declaration section:

const constant declarations

Constant declarations:
Constant declaration
Constant declarations constant declaration

5.3.2.1.1.3 Variable declaration section

The declaration section for variables contains all variable declarations which are local to the block involved.

Structure of the variable declaration section:

var variable declarations

Variable declarations:
Variable declaration
Variable declarations variable declaration

16 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.2.1.2 Command section

It is in the command section that all operations are defined which are executed at block activation.

Command section:

Compound statement

Permissible compound statements are explained in chapter 5.3.5.5.

The command section of the main program block is structured as follows:

begin
 Statement list;
end.

5.3.2.2 Range of application

Each designator and each label of a declaration agrees precisely one object or jump destination. This is why
a designator, like a label, must always be in its declaration's range of application when it appears in the
program. The range of application for designators and labels lies between the actual declaration as such and
the end of the block involved, with all those blocks being included which this block encloses. There are,
however, a few exceptions to this, which are explained in the paragraphs below.

5.3.2.2.1 Redeclaration in a subordinate block

With the assumption that a block »outside« encloses a block i.e. is of a higher order, every redeclaration of a
designator from »outside« in the block »inside« restricts this designator's range of application to the »inside«
block. Or to put it another way: if a variable x is declared »outside« and a variable of the same name is
declared »inside«, then statements in the block »inside« cannot access the variable x declared »outside«.

5.3.2.2.2 The location of a declaration in a block

Designators and labels must be declared before they can be used in a block. The NCC compiler will react to
access attempts before such declaration with Error Number 3.

5.3.2.2.3 Redeclarations inside a block

Designators and labels can each be declared only once on the topmost level of a block, unless they are
redeclared inside a subordinate block.

5.3.2.2.4 Standard designators

rw_SymPas offers a whole series of predefined constants, types and procedures, which work as if they had
been declared inside a block covering the whole program. Consequently their range of application also
covers the entire program.

17 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.3 Variables

5.3.3.1 The declaration of variables

The variable declaration contains a list of designators, which in their turn stand for new variables and their
types.

Variable declaration:

Designator list: type;

Designator list:
Variable names
Variable names, variable name

Type:

BOOLEAN
INTEGER
SINGLE
TIMER
DOUBLE

Examples of valid variable declarations are:

var
 on, off: BOOLEAN;
 one: INTEGER;
 dvalue: DOUBLE;
 ticks: TIMER;

When a designator is located in the designator list of a declaration section, it applies inside the entire block
for which it has been declared. Reference can be made to this variable throughout the block, provided the
same designator is not being used for a different variable in a subordinate block ("redeclaration"). A
redeclared variable uses the name of an already-existing designator, but otherwise represents an
autonomous unit. The value of the original variable is not affected by the redeclaration. Variables or functions
declared outside procedures are referred to as global. Variables declared inside procedures or functions are
local.

5.3.3.1.1 Axis-type declaration

You can define variable axes with the AXIS type declaration. It is particularly useful for the design of sub-
programmes (procedures/functions) used several times and in which recurrent actions are to be executed for
several axes.

Example:
 var
 VA : AXIS; // variable axis with name VA
 VA.an := 0; // Assign axis number 0 to VA (important!)
 ol(VA); // open loop of axis 0
 for VA.an := 0 to 5 do cl(VA); // close loop axes 0 .. 5

Note: The axes numbers of the predefined axes specifiers (A1 .. An) that are defined by the system
parameters can also be assigned anew in this way. This can yet cause a confused and incorrect
programming. Should you operate with variable axes, the use of the corresponding variables with
corresponding symbol character is recommended.

Notice: Currently, variable axes may be declared only in the main program, i.e. not in procedures or
functions!

18 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.3.1.2 Timer declaration

An entry with the aid of the predefined system variable CLOCK supplies a value of the timer type, which
represents the time. This value is supplied by the control's internal clock, which alters its value at regular
intervals. This value continues cyclically, i.e. after the largest positive value the next value supplied is the
smallest negative value. The time interval in which this internal clock is incremented is 64 µs.
CLOCK can be used at any time to assign the counter reading of this clock to an integer or timer variable. If
different times have to be compared with each other, this comparison should be carried out only by means of
timer variables, since here a timer overflow will automatically be taken into account at the comparison
operator >. Likewise, addition and subtraction with timer variables is performed in modulo technique, i.e.
without signs. With integer variables, conversely, there may be an overflow or underflow, which in turn will
cause the internal error flag to be set and in certain situations will trigger an abort of the rw_MOS operating
system.
A practical timer application might look like this:

Const
 s := 15625; // 15,625 ticks = 1s
Var
 t: timer

t := CLOCK + 5*s; // Compute time-delay of 5 s from now
...
repeat
 ...
until CLOCK > t; // wait until 5 s have passed
...

In this example, you can see that the addition of CLOCK and the time-delay results in an overflow at large
values for CLOCK. We therefore recommend using the timer instead of the integer type for declaration of the
variable t. Another reason is the interrogation of whether the computed time-delay has been reached. In the
event of an overflow in computing the time-delay, you see, the content of t is smaller than CLOCK. This
circumstance is likewise handled properly by the declaration as a timer variable.
The value range of a timer variable lies between 0 and 4294967295. Time-delays of up to 38h can be
implemented.

5.3.3.2 Conversion of variable types

The reference to a variable of a particular type can be converted into a reference to a variable of a different
type.

Type conversion:

Type designator (variable reference)

Type designator:

BOOLEAN
INTEGER
SINGLE
DOUBLE

A few examples for the conversion of variable types:

var
 B : BOOLEAN;
 I : INTEGER;
 D : DOUBLE;

 B := BOOLEAN (I);
 B := BOOLEAN (D);
 D := B;
 I := INTEGER (D);
 I := B;

19 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.4 Expressions

Expressions consist of operators and operands. Most operators of rw_SymPas link two operands and are
therefore referred to as binary. The remaining operators work with only one operand and are therefore
referred to as unary. Binary operators utilize the conventional algebraic form like a+b. A unary operator is
always positioned immediately before its operand, as with -b. In the case of extensive expressions, the order
of precedence shown in Table 26 governs the sequence of computation. Three basic rules apply:

• An operand between two operators of different precedence rankings is always linked to the higher-

ranking operator.
• An operand between equal-ranking operators is always linked to the operator located to the left of it.
• Expressions in brackets are regarded as a single operand and always evaluated first.

Table 26: Operator precedence

Operators Precedence Category
-, +, not 1 (highest) unary
*, /, mod, shl, shr and 2 multiplying
+, -, or, xor 3 adding
=, <>, <, >, <=, >= 4 relational

Operations of the same precedence ranking are normally performed from left to right.

5.3.4.1 Syntax of expressions

The order of precedence for operators follows the syntax for expressions composed of factors, terms and
simple expressions. Factors can be represented by the following syntax:

Factor:

variable reference
unsigned constant
(expression)
not factor
type conversion (values)

unsigned constant:

unsigned numerical value
character string
constant designator

The following particulars represent valid factors:

Dummy variable reference
15 unsigned constant

5.3.4.2 Operators

We distinguish between four groups of operators: arithmetical, logic, boolean and relational operators.

20 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.4.3 Arithmetical operators

The tables below show the types of operand and result involved in binary and unary arithmetical operations.

Table 27: Binary arithmetical operators

Operator Operation Operand type Result type
+ Addition Integer, Real Integer, Real
- Subtraction Integer, Real Integer, Real
* Multiplication Integer, Real Integer, Real
/ Division Integer, Real Integer, Real
mod Modulo Integer Integer

Note: If one of the operands is of the Timer type, addition and subtraction are performed using the modulo
technique. No overflow check is made, since the Timer values are cyclical. You will find more details on the
Timer type in Chapter 5.3.3.1(b)

Table 28: Unary arithmetical operators

Operator Operation Operand type Result type
+ Identity Integer, Real Integer, Real
- Negation Integer, Real Integer, Real
If both of an operator's operands +, -, *, /, or mod have an integer type, the result will likewise be of the
integer type. If one of an operator's operands is +, -, *, or / is of the Real type, then the result will likewise be
of the Real type.
The mod operator returns the rest of the division of its operands as follows:

i mod j = i - (i/j)*j;

5.3.4.4 Logic operators

Table 29 shows the types of operand involved and the results of logic operations.

Table 29: Logic operations

Operator Operation Operand type Result type
Not bitwise negation Integer Integer
And bitwise AND Integer Integer
Or bitwise OR Integer Integer
Xor bitwise exclusive OR Integer Integer
Shl Shift left Integer Integer
Shr Shift right Integer Integer

Note: not is a unary operator.
The i shl j and i shr j operations shift the value of i by j bit positions to the left or the right and thus correspond
to a multiplication or division by 2j.

21 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.4.5 Boolean operators

Table 30 shows the types of operand involved and the results of Boolean operations.

Table 30: Boolean operators

Operator Operation Operand type Result type
not logic negation Boolean Boolean
and logic AND Boolean Boolean
or logic OR Boolean Boolean
xor logic exclusive OR Boolean Boolean

Note: the operator not is unary here as well.
In the case of operands of the Boolean type, normal Boolean logic determines the result of these operations.
For example, a and b will only give TRUE when a and b are both true

5.3.4.6 Relational operators

Table 31 shows the operand types involved and the results of relational operations.

Table 31: Relational operators

Operator Operation Operand type Result type
= equal Integer, Real Boolean
<> unequal Integer, Real Boolean
< smaller than Integer, Real Boolean
> greater than Integer, Real Boolean
<= smaller than/equal Integer, Real Boolean
>= greater than/equal Integer, Real Boolean

Note: If one of the operands is of the Timer type, the greater than (>) operation is performed using the
modulo technique. No overflow check is made, since the Timer values are cyclical. You will find more details
on the Timer type in chapter 5.3.3.1(b).

5.3.5 Statements

This term “statement” stands for all constructs which agree an action which can be executed by the APCI-
800x board. In this manual, the term »statement« is used as a generic term for statements (like begin, end or
for) and commands (like goto, assignments, procedure calls, etc.).
Each statement (i.e. each agreement for an executable action) can be preceded by a label, which in its turn
can be referenced with goto: a goto this label causes a direct jump to this statement and its execution.

Structure of a statement:

 Label: statement

Statement:
 Assignment
 Procedure statement
 Goto statement

22 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.5.1 Assignments

Assignments replace the instantaneous value of a variable with a new value, which is specified by mean of
an expression.

Structure of an assignment:

Variable reference := expression

5.3.5.2 Procedure or function calls

A procedure is called by specifying a procedure designator with which the procedure concerned has been
declared. Parameter transfer to the procedure is supported only from mcfg.exe V2.5.3.97 (ncc.exe/dll
V2.5.3.73). By indicating a function designator, a function that has been declared with this designator is
called. The use of user-defined functions is supported only from mcfg.exe V2.5.3.97 (ncc.exe/dll V2.5.3.73)
and RWMOS.ELF from V2.5.3.126.

5.3.5.3 The goto statement

executes a jump to the label specified: the program is continued at a point immediately following the label
concerned. The syntax of goto is:

 goto Label

When goto is used, the following rules must be observed:

• The label to which goto is referenced must be located in the same block as the goto statement itself. It is

not possible to jump back and forth at will between procedures/functions with goto.
• Referencing to a structured statement block from a program section outside this block (i.e. a jump to a

deeper nesting level) may have unforeseeable consequences. rw_SymPas cannot detect errors of this
sort.

5.3.5.4 Structured instructions

consist of several interested levels, which in their turn contain statements. They are executed either in the
order of their appearance (compound statements), conditionally (conditional statements) or repeatedly
(repeat statements or loops).

Structured statement:

block command
conditional statement
repeat statement

5.3.5.5 Compound statements

Compound statements specify that the individual components they contain are to be executed in the order in
which they appear in the source text concerned. All statements contained in the compound are handled as
one single block and thus satisfy the requirements at points where the syntax of rw_SymPas permits only a
single statement. Beginning and end of a compound are indicated by begin and end, with the individual
components separated from each other by semi-colons.

23 PM / PROGRAMMING AND REFERENCE MANUAL

A compound statement can be represented as follows:

begin statement list end;

Statement list:
 statement;
 statement list statement;

Example:
 // ...
 var
 i: Integer;
 j: Integer;
 temp: Integer;
 // ...
 begin
 if (i > 0) then i := 0;
 else begin
 // interchange j and i
 temp := i;
 i := j;
 j := temp;
 end;
 end.

5.3.5.6 Conditional statements

Conditional statements offer one or more options and select one of their components (or none) for an
instruction.

5.3.5.6.1 The if statement

can be represented as follows:

 if (conditional expression) then w-statement <else f-statement>

The brackets around Conditional expression are not absolutely necessary. The result of Conditional
expression must be of the standard Boolean type. If Conditional expression is TRUE, then w-statement will
be executed; otherwise w-statement will be ignored.
If the optional else f-statement is present and Conditional expression is true, then w-statement will be
executed; otherwise w-statement will be ignored and f-statement executed.
The statements f-statement and w-statement may themselves be if-statements, thus enabling a nested
conditional test to be implemented in almost any depth you want. You have to be very cautious in using
nested if. else constructs - make absolutely sure that the correct statements are chosen. Else ambiguities
are resolved by assigning an else to the last if-without-else occurring on the same nesting depth. Compound
statements are also permissible for w-statement and f-statement.

5.3.5.7 Loops

Loops (or repeat statements) specify the repeated execution of defined program sections.

Loop:
 while statement
 repeat statement
 for statement

24 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.5.7.1 The while statement

The format for a while statement is:

while (conditional expression) do w-statement;

The brackets around Conditional expression are not absolutely necessary. The loop statement w-statement
will be executed as long as the Conditional expression gives the value FALSE. The Conditional expression is
evaluated and tested beforehand. If the value obtained is TRUE, then w-statement will be executed. If the
program does not encounter any jump statements, causing it to leave the loop, the Conditional expression
will be evaluated anew. This operation is repeated until Conditional expression gives the value FALSE. If
there are no jump statements, then w-statement must influence the value of Conditional expression, or
Conditional expression itself must alter during evaluation, so as to avoid endless loops. Compound
statements are also permissible for w-statement.

5.3.5.7.2 The repeat statement

The format for a repeat statement reads:

repeat r-statement until (conditional expression);

The brackets around Conditional expression are not absolutely necessary. The r-statement is executed as
long as Conditional expression has the value FALSE. In contrast to the while statement, Conditional
expression is tested not before, but after every execution of the loop statement. r-statement will accordingly
be executed at least once.
Compound statements are also permissible for r-statement.

5.3.5.7.3 The for statement

The format for a for statement reads:

for controlled variable := Start value to/downto final value do f-statement;

The controlled variable must be the designator of an integer-type variable, which has been declared either
inside the same block locally like the for statement, or globally for the entire program. The definition of a loop
with for includes the specification of a start and final value as well. Both these values must likewise be of the
integer type, which is assignment-compatible to that of the controlled variable.
When the loop is started, the controlled variable is set to the start value and increased or reduced by one
each time the loop is run - until the final value is reached. In each run, the f-statement or compound
statement contained in the rump of the loop is executed once. If the final condition of the loop is already
given before the first run (i.e. final value < start value or final value > start value when downto is being used),
then the loop and its rump will be skipped completely.

5.3.6 Procedures and functions

In formal terms, procedures and functions represent additional levels inside the main program block, i.e. a
nesting feature. A procedure is activated by a procedure call (i.e. specification of a designator) and does not
return a direct value. A function is activated during the computation of an expression in which its designator
appears and normally has a result which can for this call be equated with the function designator.

25 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.6.1 Procedure declarations

A declaration initiated with the reserved word procedure links a designator and a block of statements for a
procedure. Procedures declared in this manner can be activated (i.e. called) by specifying their designator. A
procedure declaration has the following formal structure:

Procedure header; procedure block;

The procedure header names the procedure (i.e. assigns a designator to it). From mcfg.exe V2.5.3.97
(ncc.exe/dll V2.5.3.73), the declaration of parameters is possible at this point. Data can be exchanged
between the main program and a procedure via global variables or these parameters. A procedure is
activated by specifying its designator: The actions defined in the command section of the corresponding
procedure declaration are executed.
A procedure which contains its own statement as part of its command section is executed recursively, i.e. it
calls itself repeatedly. In this context, a suitable criterion must be found for aborting the recursion before the
internal CNC task stack overflows.
Nesting procedures in rw_SymPas is only possible if the procedure header with optional parameters has
been declared as forward. For this, the procedure header must be followed by the keyword forward and
another semicolon. A forward declaration is only required if the procedure is to be used before the
completion of the actual declaration (with procedure block). Between the procedure header and the
procedure block, local variables and labels can be declared. Also the forward declaration is only possible
from mcfg.exe V2.5.3.97 (ncc.exe/dll V2.5.3.73).

Examples:

procedure ProcA; forward;
...
procedure ProcA;
begin
 (procedure block)
end;

procedure ProcB (ParamA, ParamB : integer; ParamC : double); forward;
...
procedure ProcB (ParamA, ParamB : integer; ParamC : double);
begin
 (procedure block using ParamA, ParamB and ParamC)
end;

procedure ProcC (ParamA : integer);
var locVarA, locVarB : integer;
 locVarC : double;
begin
 (procedure block)
end;

5.3.6.2 Function declarations

Note: In rw_SymPas, the function declaration implemented according to Pascal standard is possible from
V2.5.3.97 (ncc.exe/dll V2.5.3.73). For its execution, rwmos.elf from V2.5.3.126 is required; otherwise, an
rw_SymPas program is quit with runtime error 4 when returning from the function. Moreover, there are
various predefined system functions.

The functions (system functions and user-defined functions) are activated during the computation of
expressions in which their designator appears and stand there for the value they return. A function
designator can be inserted anywhere in an expression in place of an operand, provided the type of the
function result concerned is compatible with that of the operand replaced.

26 PM / PROGRAMMING AND REFERENCE MANUAL

Assignments to a function designator are not permitted.
A function is called by specifying its designator, followed by a list of current parameters, which in type and
sequence must conform to the formal parameters of the correspondingly predefined function. The return
value of a function must be used; otherwise, compilation error 91 is displayed.

The declaration of a user-defined function initiated with the reserved word function combines a designator,
type declarations and a block of statements to form a function. Functions declared in this manner can be
activated (i.e. called) by specifying their designator. A function declaration has the following formal structure:

Function header; function block;

The function header names the function (i.e. assigns a designator to it) and defines parameters and the
function type. Data can be exchanged between the main program and a function via global variables or via
parameters and the return value. A function is activated by specifying its designator: The actions defined in
the command section of the corresponding function declaration are executed.
A function which contains its own statement as part of its command section is executed recursively, i.e. it
calls itself repeatedly. In this context, a suitable criterion must be found for aborting the recursion before the
internal CNC task stack overflows.
Nesting functions in rw_SymPas is only possible if the function header with optional parameters and function
type has been declared as forward. For this, the function header must be followed by the keyword forward
and another semicolon. A forward declaration is only required if the function is to be used before the
completion of the actual declaration (with function block). In the function block, the return value of a variable
must be assigned with the designation of the function name. This variable for the return value can be used
within the function as a local variable. If the function is to be called recursively, the function name must be
used with a pair of parentheses, which contain the parameters. For functions without parameters, the
function call in this case must be marked by a blank pair of parentheses.
Between the function header and the function block, local variables and labels can be declared (see example
for the procedures).

Examples:

function FuncA : integer; forward;
...
function FuncA : integer;
begin
 (funktion block)
 FuncA := function return value;
end;

function FuncB (ParamA, ParamB : integer; ParamC : double) : double; forward;
...
function FuncB (ParamA, ParamB : integer; ParamC : double) : double; forward;
begin
 (function block using ParamA, ParamB and ParamC)
 FuncB := function return value;
end;

In the examples above, function return value may be any expression.

5.3.7 The syntax of an rw_SymPas program

An rw_SymPas program is similar in form to a procedure declaration. The differences are merely in the
program descriptor.

rw_SymPas program:

Program descriptor; program block

27 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.7.1 The program descriptor

The program descriptor specifies the name of a program, but has no special significance of its own.

Program descriptor:

program designator

Example:

program Test;

5.3.7.2 The program block

Program block:
Implementation section
Procedure/function command section
Initialization section

Implementation section:

Constant declaration
Variable declaration
Implementation section constant declaration
Implementation section variable declaration

Initialization section:

begin
Command section
end

The initialization section is the final constituent part of an rw_SymPas program and represents the main
program. It consists of a block initiated with begin, which contains statements and is concluded by a
terminating end. The entire program block is concluded with the (.) character.

28 PM / PROGRAMMING AND REFERENCE MANUAL

6 Stand-alone application programming

6.1 Introduction
The rw_SymPas programming language incorporates a comprehensive set of commands, which you can
use for flexible, efficient program creation. The procedure calls are performed in accordance with Pascal
convention, apart from a few exceptions.
Since the procedure names and also the functioning of the individual procedures are identical for the two
programming methods involved - stand-alone application programming [SAP] and PC application
programming [PCAP], a detailed description is provided here only for the commands involved in PCAP
programming.
The individual commands are listed in alphabetical order.

6.2 rw_SymPas example programs
The rw_SymPas example programs included in the APCI-800x TOOLSET software show how simple it is to
use the functions described below. The source texts for the example programs incorporate comments to
make them self-explanatory. So there is no need to go into a detailed description of these example programs
here. They all have the file extension .SRC and can be found in the SAP subdirectory of the APCI-800x
TOOLSET software floppy.

6.3 Abbreviations, system parameters, axis specifiers and axis
qualifiers

For the SAP function reference list printed below, we will start off by explaining the various abbreviations and
types involved, some of which are used as parameters for the different functions in question.

6.3.1 System parameters

The system parameters predefined by the rw_SymPas programming language are listed in tabular form, with
an explanation of how they function. Remember that the NCC compiler distinguishes between upper and
lower case for these parameters.

PM / PROGRAMMING AND REFERENCE MANUAL 29

Table 32: rw_SymPas predefined system parameters

Name Type Abbr. meaning Function
BOARD
TYPE

integer Board-Typ Hardware version of the control type
(see chapter 4.4.18)

CI0..CI99 integer Common Integer 0..999 100 predefined integer variables for data exchange or
for synchronization with a PC application program
running in parallel. Further information at the PCAP
commands rdci() and wrci().

CD0..
CD99

double Common Double 0..999 100 predefined double variables. Otherwise as for
CI0..CI999. Further information at the PCAP
commands rdcd() and wrcd().

CFLAG integer ControllerFlags Access to the ControllerFlags register (see Chapter
6.3.1.4)

DTCA1 double Distance-to-Center A1 Indication of medium point for helical profiles and 3 D
circles for the X circle axis

DTCA2 double Distance-to-Center A2 Indication of medium point for helical profile and 3 D
circles for the Y circle axis

DTCA3 double Distance-to-Center A3 Indication of medium point for 3 D circles for tze Z circle
axis

ERROR
REG

integer error register Bit coded error register in which internal error states of
RWMOS.ELF are indicated.

IRQPC boolean Interrupt Request PC PC interrupt request, active when TRUE
LEDGN boolean Led green Green LED on APCI-800x, switched on when TRUE
LEDRD boolean Led red Red LED, otherwise as for LEDGN
LEDYL boolean Led yellow Yellow LED, otherwise as for LEDGN
LET double Latch End Time Time for the recording of the graphical system analysis

in seconds from the moment LST. See the commands
LPR and LPRS. Basically 1000 values are always
recorded. The value entered in LET is always rounded
up in integral multiples of 1000 * TA. TA is set to 1.28ms
as a standard.

LST double Latch Start Time Moment for the begining of the recording the graphical
system analysis in seconds from the moment of the
calling up. See the commands LPR and LPRS.

MODEREG integer Mode Register Bit coded register to control the operating system
functionality (see chapter 6.3.1.5)

NFRAX integer No-Feed-Rate-Axis In this variable the axes ca be defined as bit coded.
They are not utilized for the calculation of the trajectory
velocity by interpolation movements.

NOA integer Number of Axis This system variable includes the number of the axes
actually available in the system and cannot be written.

OSVERSION integer Operating system
– version information

The predefined system parameter OSVERSION (Type)
returns the current operating system version number of
the rwmo.elf file while the SAP program is running. The
version number contains a primary number and
secondary number. Yet the primary number is
incremented in 1000 steps and the secondary in 1
steps. The version number 253042 e.g. means that the
primary number is 2.5.3 and the secondary is 042.

PHI double Traverse angle for circular and helical profiles
DTCA1 double Distance-to-Center A1 Center point for helical profile with target point for the X

axis

30 PM / PROGRAMMING AND REFERENCE MANUAL

Name Type Abbr. meaning Function
DTCA2 double Distance-to-Center A2 Center point for helical profile with target point for the Y

axis
NFRAX integer No-Feed-Rate-Axis Axes can be coded in bits, which are not utilized by

interpolation for the calculation of the trajectory velocity.
PN1 double Plane-Normal Surface normals for MCA3D command. Additional

Information at the command MCA3D.
PN2 double Plane-Normal Surface normals for MCA3D command. Additional

Information at the command MCA3D.
PN3 double Plane-Normal Surface normals for MCA3D command. Additional

Information at the command MCA3D.
PU integer Position Unit Index for position unit (Table 33)
SSFP integer Spool-Special-Function-

Parameter
Function parameter for specific functions in the spool
operating mode. Additional information at the SAP
command SSF

TRAC double Trajectory Acceleration Trajectory acceleration for linear, circular and helical
profiles. The unit of this parameter is defined in TU und
PU.

TROVR double Trajectory Override Trajectory velocity correction value
TROVRST double Trajectory Override

Settling Time
Time for the settling of the trajectory velocity correction
value

TRTVL double Trajectory Target Velocity Trajectory target velocity for linear, circular and helical
profiles. The unit of this parameter is defined in TU und
PU.

TRVL double Trajectory Velocity Trajectory velocity for linear, circular and helical
profiles. The unit of this parameter is defined in TU und
PU.

TU integer Time Unit Index for time unit (Table 34)

6.3.1.1 PC interrupt generation

You can use the IRQPC system parameter to trigger a hardware interrupt on the PC. This option offers an
efficient approach for using the two programming methods: PC application and stand-alone application
programming. A stand-alone program can be used for largely autonomous process sequence, which needs
to interrupt the parallel-running PC program only if necessary, or in the event of an error. The program is
then interrupted with the aid of this interrupt generation feature. After the PC program has detected the
hardware interrupt, the common variables listed above can be used for exchanging data between the two
parallel-running programs.

Note: The hardware configuration for PC interrupt generation (PCI-Interrupt) is automatically given with the
aid of the Plug & Play properties integrated on the APCI-800x board and manage through the system driver
mcug3.dll. The user has only to define a PCAP user routine with predefined structure and to inform the
driver. Once the APCI-800x board has generated a hardware interrupt, the corresponding user routine is
called up automatically. The mcug3.dll driver is structured in such a way that other PCI interrupts, which use
the same interrupt sources can be called up as well.
The driver software that is contained in the scope of delivery, supplies functions in order to easily install an
interrupt service routine and, if required, to uninstall it (see chapters 4.4.33 and 4.4.34).

6.3.1.2 System parameters for unit processing

All move commands of the rw_SymPas programming language require specification of the acceleration
(TRAC), velocity (TRTVL, TRVL) and position parameters, each in selected distance and time units. You can
use the two system parameters listed below to switch over the path unit (PU) and time unit (TU) parameters
any time you want.

PM / PROGRAMMING AND REFERENCE MANUAL 31

Table 33: System parameter PU

Value Unit Abbr. meaning
0 Mm Millimeter
1 Inch Inch
2 M Meter
3 Rev Revolution
4 Deg Degree
5 Rad Radiant
6 Counts Counts
7 Steps Steps

Table 34: System-Parameter TU

Value Unit Abbr. meaning
0 Sec Seconds
1 Min Minutes
2 Tsample Sampling time

Note: The default values for TU and PU are specified in the [Setup][Set CNC-specific parameters] menu in
the CNC Editor environment.
The units selected are used only for interpolation commands (all move commands)! If the commands
concerned are axis-specific motion ones (all jog commands), the axis units specified in mcfg.exe are taken
into account. There is no option here for switching over during the run time.

6.3.1.3 ERRORREG

In this bit-coded register, runtime errors of the RWMOS operating system software are specified. The bit
assignment can be found in Table 15 in Chapter 4.4.63.1.

The ERRORREG register is only reset if it is written on with 0 or by a system boot.

6.3.1.4 ControllerFlags

This is an axis-specific bit-coded register by means of which special options in the position controller of the
motion control boards can be activated. There are options for the behaviour of the position controller during
traversing and standstill. This register is only effective with servo-axes having PID filter characteristics; with
stepper axes, it has no effect. The register can be accessed using the dll functions wrControllerFlags
(Chapter 4.4.137) and rdControllerFlags (Chapter 4.4.51). From the rw_SymPas programming, the register
can be accessed using the axis qualifier CFLAGS.

32 PM / PROGRAMMING AND REFERENCE MANUAL

Table 35: Description of the ControllerFlags register
Bit # / Hex Name Description
0 / 0001H MoveControl Activate all Move... flags
1 / 0002H MoveZero Delete the integral component of the axis controller once the axis is

traversed.
2 / 0004H MoveDeadBand Limit the integral component of the axis controller once the axis is

traversed and the control difference of the axis is outside the deadband.
In the ControllerParams field [8][0], the deadband is specified in digits
(see also Chapter 4.4.114).

3 / 0008H MoveFix Retain the integral component of the axis controller and do not integrate
it further once the axis is traversed.

4 / 0010H not used
5 / 0020H not used
6 / 0040H not used
7 / 0080H not used
8 / 0100H StopControl Activate all Stop... flags
9 / 0200H StopZero Delete the integral component of the axis controller once the axis stands

still.
10 / 0400H StopDeadBand Limit the integral component of the axis controller once the axis stands

still and the control difference of the axis is outside the deadband. In the
ControllerParams field [8][0], the deadband is specified in digits (see
also Chapter 4.4.114).

11 / 0800H StopFix Retain the integral component of the axis controller and do not integrate
it further once the axis stands still.

12 - 31 not used

Move... means that the relevant flags take effect once the corresponding axis is traversed. Stop... means that
the relevant flags take effect once the corresponding axis is position-controlled. If StopControl and
MoveControl are set to FALSE, all other bits are ineffective. To display these flags and set them for test
purposes, the utility program McuControlInit.exe, which is described in the Operating Manual (OM), is
availabe.

6.3.1.5 MODEREG

With the bit-coded register different options of the operating system software RWMOS.ELF can be set. As a
standard all bits are set to 0.

Note: When a bit is to be set or reset in this register, you must pay attention that the other bits are not
modified. For this, it is necessary to read MODEREG before writing, to process the content with boolean
operations and then to write again. Bits are set with boolean Or connection, and reset with And connection.
Bits which are currently not assigned must not be used as they are reserved for future extensions.

PM / PROGRAMMING AND REFERENCE MANUAL 33

Table 36: Bit-coding MODEREG

Bit # / Hex Name Description
0 / 0001H LookAhead With this bit, the look-ahead functionality of the RWMOS operating

system software is activated. The given target velocity of interpolation
profiles is limited so that the maximum axis-specific velocity jump
MDVEL is not exceeded with any axis and that all axes are at rest by
the end of the interpolation travel. This mode is only valid for the
commands SMLA, SMLR, SMCA, SMCR, SMHA, SMHR.
In addition, in this mode, the trajectory velocity in circle commands is
limited in such a way that the axis-specific maximum acceleration
(MaxAcc) is not exceeded with any axis involved. The maximum
velocity is calculated as follows: √ (circular radius * >MaxAcc). For this,
see also Chapters 4.4.160, 4.4.85 and 6.3.3.

1 / 0002H S-Profil By setting this bit, the acceleration and braking ramps are run with
S-fom velocity rise/drop. This option can be parameterised with the axis
qualifier JERKREL.

2 / 0004H free for future use
3 / 0008H WkzRadKorr Tool radius correction (only for TC option)

The tool radius correction is described in a separate manual. Ask for it if
you need it.

4 / 0010H free for future use
5 / 0020H AutoSpool When travel profiles are spooled in SAP programs, the spooler is

checked by the activated option. Once the spooler is full, the spooler
processing is automatically started by the axes selected in the current
axes. Further profiles are only entered when memory is available. This
option can be used for the following travel commands:
SMLA, SMLR, SMCR, SMCA, SMHA, SMHR and G01 by DIN66025

6 / 0040H NoTriangle Triangular profiles in look-ahead mode are disabled. In case a sub-
profile cannot reach the programmed trajectory velocity, the current
start velocity remains. This enable a correcter running for short travel
profile parts without continuous acceleration and braking phases.

7 / 0080H ChkMaxVel In this mode, the trajectory velocity and the trajectory acceleration of all
axes are limited by spooled linear interpolation commands so that no
axis exceeds the maximum values set in MAXVEL and MAXACC.
No-Feedrate axes are also included in this monitoring (see Table
32– NFRAX).

8 / 0100H ExactTargetPos Usually at the end of an travel profile which has a target velocity of 0,
the setpoint position is rounded up in integral value of the system
resolution. It is for example by stepper motor systems a step or by
encoder systems an encoder counting pulse. It can cause an error by
connecting relative profiles with each other. This rounding up can be
switched off by setting this bit.

9 / 0200H ShortestRotatoric
Distance

When this bit is set by rotary axes, Jog absolute commands (JA) are
run in the direction in which the shortest traverse distance is required.

10 / 0400H RotatoricUnit When this bit is set, the target position / the traverse distance are given
in the axis-specific rotatory unit for rotatory axes which must be
travelled with translatory axes per interpolation command.

11 / 0800H ForbidTargetVel If this bit is set, a system reset (rs) is executed, if the traverse profiles
are terminated with a target speed <> 0.
In this case in the system variable ErrorReg Bit 1 is set.

12 / 1000H CenterAlwaysRel Circle centers at G-Codes G02 and G03 are to be interpeted always a
relative coordinates.

13 / 2000H NoLsmCheck By setting this flag, the automatic spooler monitoring at G01 of the G-

34 PM / PROGRAMMING AND REFERENCE MANUAL

Bit # / Hex Name Description

Code interpreter (McuWIN) can be switched off.

14 / 4000H Free for future use
15 / 8000H MS_DECEL With the MotionStop (ms) command, use the value from TRAC as

braking acceleration considering the active interpolation units.
16 / 1 0000H

to
23/80 0000H

 Free for future use

24 /
0100 0000H

SimulationMode With this bit, the control can be set into the simulation mode. In this
mode no position sizes are given to the dirve systems, the profile of the
actual position is simulated.
Caution: A drift of the axes must be avoided from the user, as in this
mode, the bearing controller is disabled.

25 /
0200 0000H

OverMode When this bit is set, the Jog-Override of the selected axes will not be
influenced when calling the commando ctru.

26 /
0400 0000H

StopAtWriteln When this bit is set, the SAP command writeln causes to stop the
corresponding task. In this case in the register “running” of the data
structure CNCTS (Section 4.3.2.10) additionally Bit 2 is set. This mode
can be used for the complete processing of output strings in an
overlapping program.

27 /
0800 0000H

ClearZeroPosition When this bit is set, the zero offset set with szpa / szpr is deleted.
However, the current position values remain the same. When the bit is
set, the reference position can thus be moved at any time, for example.

28 /
1000 0000H

JSatSAF JOG Stop at Spooler-Asynchronous Flag: If this bit is set, all axes are
stopped with the programmed Stop deceleration when an SAF flag
appears in the AXST register. In case of error, also bit 19 is set in the
ErrorReg.

29 /
2000 0000H

InhibitProfile
Refuse

Usually, interpolation positioning profiles without traverse distance or
with velocity/acceleration = 0 are automatically rejected and an error
message in the fwsetup monitor screen is generated. Using this bit, the
output of an error message during the rejection of positioning profiles
can be disabled.

Following
bits

 Currently not assigned, reserved for future use

6.3.2 Axis specifiers
The various axis channels are referenced with a symbolic name. You can choose these names quite freely in
the mcfg.exe program. In the rw_SymPas programming language, these names are predefined automatically
and serve in the user program as parameters for various commands. Remember that the NCC compiler
distinguishes between upper and lower case for the axis specifiers.

PM / PROGRAMMING AND REFERENCE MANUAL 35

6.3.3 Axis qualifiers
The system parameters listed below are used as axis qualifiers and are therefore available for all the axis
channels in the system and thus for all axis specifiers. You can use these parameters to interrogate or set
various axis-specific data. Remember that the NCC compiler distinguishes between upper and lower case for
these parameters. An axis qualifier is referenced by stating an axis specifier, the character "." and the axis
qualifier. The example below illustrates this.

...
var
 input: integer;
...
input := A2.digi; // Read in digital inputs from
 // axis channel 2
...

Table 37: Axis qualifiers

Name Type Abbr. meaning Function
an integer axis number The axis qualifier an contains the axis number of the axis

designator involved. The qualifier can be used in relation with
„variable“ axis name. [Chapter 5.3.3.1]

aux double Auxiliary Register The content of this register is dependent from the option. If the
system includes the optionEV (Encoder Verification), the
encoder count by stepper motor systems can be accessed
through this variable. In this case the unit of the register is
Counts.

axst integer axis status Error, state and profile flags (wordwise)
digi integer digital inputs Digital inputs of the APCI-800x (wordwise)

Various flags of this register can be erased by assigning any
desired value to this register [chapter 4.4.51.1].

digo integer digital outputs Digital outputs of the APCI-800x (wordwise)
dp double desired position Setpoint position of the axis channel
dpoffset double desired position

offset
In this register, a position offset for the position controller can
be entered in the axis-specific user unit. This register can be
used for a cascade control e.g. by steppers with encoder
verification.
This register is available for stepper systems from the version
2.5.2.23 of RWMOS, for servo systems from the version
2.5.2.29 of RWMOS.

dv double desired velocity Setpoint velocity of the axis channel
dvoffset double desired velocity

offset
In this register, a velocity offset of the position offset (dpoffset)
for the position controller can be entered in the axis-specific
user unit.

effradius double Effektiv Radius When rotary axes are involved in translatory interpolation
travels:
axis-specific parameter for conversion of rotatory values in
tanslatory ones, (Surface area processing) [Chapter 2.3.4]

epc integer EEPROM
programming cycles

Number of programming cycles

gcr integer gear configuration
register

With this register, the Gear functionality of the APCI-8001 can
be controlled.
This register is also described in the manual “Resource
Interface”.

36 PM / PROGRAMMING AND REFERENCE MANUAL

Name Type Abbr. meaning Function
gf double gear factor The axis-specific gear factor can be accessed using this

variable.
An assignment to this value may only be made in special
cases.

ifs integer interface status Interface status flags of the APCI-800x (wordwise)
Various flags of this register can be erased by assigning any
desired value to this register [see chapter 4.4.69.1].

hac double home acceleration Acceleration for home commands
hvl double home velocity Velocity for home commands
ipw double In position window Position-dependent target window
jac double jog acceleration Acceleration for jog commands
jerkrel double Jerk Relativ Parameter for S velocity profile
jovr double jog override Velocity factor
jtvl double jog target velocity Target velocity for jog commands
jvl double jog velocity Velocity for jog commands
kd double PIDF filter coefficient for differentiation
kfca double PIDF filter coefficient for forward compensation for acceleration
kfcv double PIDF filter coefficient for forward compensation for velocity
ki double PIDF filter coefficient for integration
kp double PIDF filter coefficient for amplification
kpl double PIDF filter coefficient for add. phase lead
lp double latched position latched position value
lpndx double latched position

index
latched position value with index signal (zero track)

lsm integer left spool memory free spool area [Bytes]
maxacc double maximum

acceleration
Axis-specific maximum acceleration in ChkMaxVel mode

maxvel double maximum velocity Axis-specific maximum velocity in ChkMaxVel mode
mcis integer Move Commands in

Spooler
This register shows how many traverse commands are
currently included in the spooler. Thus the processing state of
the spooler is checked. This information can be used, when
the current process must be continued after interruption (see
also PCAP command rdMCiS).

mcp integer Motor Command
Port

Servomotors: Setpoint value for anologue port stepper motors:
Stepper signal for stepper motor perfomance end levels.
Additional description of the commands: wrmcp
(chapter 4.4.152) and rdmcp (chapter 4.4.87).

mdvel double maximum velocity
skip

Axis-specific maximum velocity jump in Look-ahead mode

mpe double maximum position
error

Maximum permitted position error

poserr double position error The current axis-specific position error in the user unit is
shown in this register. This is the value dp – rp calculated in
real-time.

pprev double Pulses per
Revolution

The number of encoder pulses per revolution (drive side) can
be read in this register. For stepper and linear axes or if the
denominator unit of slsp is a linear unit, 0 is returned here.
Compared to slsp, a possible pulse quadruplication is taken
into account here.

rp double real position Actual position of the axis channel
rv double real velocity Actual velocity of the axis channel [Chapter 4.4.97],

can only be read not assigned
sdec double stop deceleration Stop deceleration of the axis channel
sf integer special function Application-specific register.

PM / PROGRAMMING AND REFERENCE MANUAL 37

Name Type Abbr. meaning Function
sll double Software limit left Left software limit
slr double Software limit right Right software limit
slsp double Slits or stepper

Pulses
In this register, the number of encoder slits per turn (drive side)
or the number of steps per turn at stepper motors can be read
or set. Quadruplication and units correspond with the values
set in mcfg.

tp double target position Target position of axis channel
zerooffset double Zero-Offset Lately set zero point switch

The function of these qualifiers can be found at the relevant rdxxxx() and wrxxxx() commands in the function
reference list for PCAP programming. The significance of the qualifier digo, for example, is explained under
the wrdigo() command.

Exception: The PIDF filter coefficients become operative together with the SAP command UF(). These
coefficients are read and written on PCAP level using the rdf() and uf() commands.

6.3.4 Structured axis qualifiers

The system parameters listed below are used as structured axis qualifiers and are therefore available for all
the axis channels in the system and thus for all axis specifiers. You can use these parameters for bitwise
interrogation and setting of various axis-specific data. Remember that the NCC compiler distinguishes
between upper and lower case for these parameters. Referencing to a structured axis qualifier is illustrated
by the example below:

...
const
 enable = 1;
var
 input: boolean;
...
input := A2.digib.enable; // read digital input 1 of axis
 // channel 2 (I1)
A1.digob.7 := TRUE; // Set digital output 7 (O7)
...

Table 38: Structured axis qualifiers

Name Type Abbr. meaning Function
digib boolean digital-input-bit Digital inputs of the APCI-800x (bitwise)
digob boolean digital-output-bit Digital outputs of the APCI-800x (bitwise)
ifsb boolean interface-status-bit Status flags of the APCI-800x (bitwise)
axstb boolean axis status-bit Error, status and profile flags (bitwise)

The function of these qualifiers can be found at the relevant rdxxxxb() and wrxxxxb() commands in the
function reference list for PCAP programming. The significance of the qualifier digib, for example, is
explained in the rddigib() command.

Note: Bit counting for the structured axis qualifiers begins at 1!

38 PM / PROGRAMMING AND REFERENCE MANUAL

6.3.5 Abbreviations

Some of the abbreviations used in the function reference list will be explained to start with:

Table 39: Abbreviations

Name Description
A1 Symbolic name for the first axis channel. This name can be freely
 selected in mcfg.exe. Is mainly used for examples
A2 Symbolic name for the second axis channel. Otherwise as for A1.
Spec Axis specifier, such as A1 or A2
Qual Axis qualifier, such as digi, digib, digo, digob, axst etc.
Pos Position setpoint value (data type: double)
Event Procedure with function as event handler

6.4 Reserved procedure names with event function
rw_SymPas incorporates a series of predefined procedure names with event function. If there are procedure
definitions with these procedure names in the user program, the CNC task can be made by means of an
enable command to call these procedures automatically if a procedure-specific event occurs. These
procedures are accordingly also referred to as "event handlers".

Note: The events are checked after every execution of an rw_SymPas statement. Here it must be observed
that the respective events are not checke anymore, if a task is terminated. If a continuous event monitoring is
necessary, the respective task must stay in a an endless loop.

6.4.1 Event procedure EVEO

The EVEO event procedure is processed automatically after the definition of the procedure EVEO and the
release of the corresponding event. The EO (Emergency Out) event occurs when a digital input planned with
EO function is activated (see MCFG / Chapter 1.7.2.5). If the system includes more than one EO inputs, the
axst status register can be used to check which EO input is causing the error concerned. A simple example
program for implementing an EO-handler is listed below:

 ...
 procedure EVEO; // predefined name for
 // Timeout EVENT hHandler
 begin
 CI0 := 999; // Common Variable
 // signals program abort
 abort; // Abort application program
 end;

 ...
 begin
 ...
 CI0 := 0; // Delete common
 // Variable
 enev(EVEO); // Enable timeout handler
 ...
 end.

PM / PROGRAMMING AND REFERENCE MANUAL 39

6.4.2 Event procedure EVDNR

The EVDNR event procedure also operates like EVEO, except that this procedure is processed automatically
when the Drive Not Ready event occurs. The DNR event occurs when a digital input planned with DR
function becomes inactive (MCFG / Chapter 1.7.2.5).

6.4.3 Event procedure EVLSH

The EVLSH event procedure also operates like EO, except that this procedure is processed automatically
when the Limit Switch Hardware event occurs. The LSH event occurs when a digital input planned with
LSL_SMD, LSL_TOM, LSL_SMA, LSL_SMD, LSR_TOM, LSR_SMA or LSR_SMD function is activated
(MCFG / Chapter 1.7.2.5).

6.4.4 Event procedure EVLSS

The EVLSS event procedure also operates like EVEO, except that this procedure is processed automatically
when the Limit Switch Software (software limit) event occurs. The LSS event occurs when the current
position of an axis system exceeds a limit value specified in the TOOLSET program mcfg.exe and the limit
value concerned has been planned with the TOM, SMA or SMD function (MCFG / Chapter 1.7.2.5).

6.4.5 Event procedure EVMPE

The EVMPE event procedure also operates like EVEO, except that this procedure is processed automatically
when the Maximum Position Error event occurs. The MPE event occurs when the control loop is closed and
the difference between setpoint and actual positions of an axis system exceeds the limit value specified in
the TOOLSET program mcfg.exe (MCFG / Chapter 1.7.2.1.9)

6.4.6 Event procedure EVUI

The EVUI event procedure also operates like EVEO, except that this procedure is processed automatically
when the User Input event occurs. The UI event occurs when a digital input planned with UI is activated
(MCFG / Chapter 1.7.2.5). You have an option for building up user-specific special functions with UI-planned
digital inputs in the SAP program. Alternative cyclical polling can be dispensed with.

6.4.7 Priority and processing sequence for the event procedures

It is possible that different events will occur at the same point in time. In this case, the following priorities
apply:

Procedure
name

Priority

EVEO highest priority
EVDNR
EVLSH
EVLSS
EVMPE
EVUI lowest priority

40 PM / PROGRAMMING AND REFERENCE MANUAL

If one event procedure (Event 1) is currently being processed, the occurrence of another event (Event 2) with
lower or higher priority will be ignored; this event will not be executed until the current event handler (Event
1) has been processed. But Event 2 must still be active then!

Note: After the STOP and ABORT SAP commands and during execution of the WT() SAP command, no
event handlers will be processed!

6.5 SAP block commands
The command reference list provided below contains a series of commands which can be used to achieve a
block-oriented program structure. All these commands have names which end with the character "W".
Examples include the SAP commands MLAW(), JAW() or SSMSW(). These commands automatically wait
for the profile end of all axes involved, i.e. the next statement will not be processed until the target positions
of the selected axes have been reached. For this purpose, the CNC task polls the profile end flags of these
axes and continues the program at the next statement when appropriate. This check routine takes the
above-enabled EVENT handlers into account and processes them automatically when and as required.

Note: Another option for profile end checking is to evaluate the axst axis qualifier.

6.6 rw_SymPas SAP command reference list

6.6.1 Structure of the reference list

The reference list is structured as follows:

ABBREVIATION MEANING,
DESCRIPTION

This is the name which is used to call the function subsequently described.
Here you will find a detailed description of the function name concerned.

FUNCTION PARAMETERS: If the function demands a parameter transfer, these are listed here.
SYSTEM PARAMETERS: Various functions are executed by taking various system parameters into account.

These are listed here.
SIMULTANEOUS FUNCTION: With various functions, it is permitted to specify one or more axes for which the

function concerned is to be executed.
REFERENCES: Refers to other functions and chapters.
DECLARATION: The formal declaration of predefined system functions; user-defined elements are

shown in italics.
RESULT TYPE: The type of the value returned (with system functions only).
DESCRIPTION: Plaintext description of the command concerned.
NOTE: Recurrent notes and explanations here indicate the chapters you should consult.
EXAMPLE: An example of the function involved.

6.6.2 ABORT, abort

DESCRIPTION: This command causes a running SAP program to be aborted. In contrast to the
STOP statement, the program cannot be continued with the PCAP command
contcnct() or the SAP command CONTCNCT(). This is possible only with the
PCAP command startcnct() or the PCAP command STARTCNCT().

NOTE: After the command has been executed, the enabled EVENT handler procedures
will no longer be processed.

EXAMPLE: ABORT;

PM / PROGRAMMING AND REFERENCE MANUAL 41

6.6.3 ABS, absolute function

DESCRIPTION: The function returns the absolute value of value.
DECLARATION: abs(value:double)
RESULT TYPE: double
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := -5.0;
d2 := ABS(d1); // d2 := 5.0

6.6.4 ACOS, arc cosine function

DESCRIPTION: The function returns the arc cosine of value. The argument Value must lie within
the range [-1..+1]. The return value has the unit rad and lies within the limits [0..pi].

DECLARATION: acos(value:double)
RESULT TYPE: double

6.6.5 ASIN, arc sine function

DESCRIPTION: The function returns the arc sine of value. The argument Value must lie within the
range [-1..+1]. The return value has the unit rad and lies within the limits [-
pi/2..+pi/2].

DECLARATION: asin(value:double)
RESULT TYPE: Double

6.6.6 ATAN, arc tangent function

DESCRIPTION: The function returns the arc tangent of value. The return value has the unit rad and
lies within the limits [-pi/2..+pi/2].

DECLARATION: atan(value:double)
RESULT TYPE: Double

6.6.7 AZO, activate zero offsets

DESCRIPTION: PCAP command azo()
FUNCTION PARAMETERS: Integer constant in the value range of 0..4
EXAMPLE: const Offsets1 = 1;

azo(Offsets1); // Activate zero offsets Set 1

42 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.8 CL, close loop

DESCRIPTION: PCAP command cl() [chapter 4.4.6]
FUNCTION PARAMETERS: Spec
SIMULTANEOUS
FUNCTION:

Yes

EXAMPLE: CL(A1, A2); // Bring Axis Channels 1 and 2 into position control

6.6.9 CLV

DESCRIPTION: PCAP command clv() [Kapitel 4.4.9]
FUNCTION PARAMETERS: Spec
SIMULTANEOUS
FUNCTION:

Ja

EXAMPLE: clv (A1, A2); // Bring axis channels 1 and 2 into position contro
js (A1, A2); // then stop the axes immediately

6.6.10 CONTCNCT, continue CNC-Task

DESCRIPTION: This command continues the CNC task transferred in the parameter.
FUNCTION PARAMETERS: Integer constant in the range of 0..3
NOTE: The command can be used to continue a stopped SAP program.

An SAP program which has been stopped with the SAP command ABORT can
only be restarted (i.e. not continued) with the SAP command STARTCNCT() or the
PCAP command startcnct(). Automatic continuation of stopped tasks is not
possible either.

EXAMPLE: ...
const
 TASK0 = 0;
...
CONTCNCT(TASK0); // continue Task 0
CONTCNCT(1); // continue Task 1

6.6.11 COS, cosine function

DESCRIPTION: The function returns the cosine of value. The argument Value is interpreted as an
angle in the unit rad (0..2Pi = 0..360) degrees.

DECLARATION: cos(value:double)
RESULT TYPE: Double
NOTE: Sin(), Tan()-function
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := 3.1415;
d2 := COS(d1); // d2 := -1.0 (rounded)

PM / PROGRAMMING AND REFERENCE MANUAL 43

6.6.12 COSH, hyperbolic cosine function

DESCRIPTION: The function returns the hyperbolic cosine of value.
DECLARATION: cos(value:double)
RESULT TYPE: Double

6.6.13 DISEV, disable event

DESCRIPTION: disables the event handler specified
FUNCTION PARAMETERS: Event
REFERENCES: Chapter 0 and SAP command ENEV()
EXAMPLE: DISEV(EVEO); // ignore emergency out handler

6.6.14 ENEV, enable event

DESCRIPTION: enables the event handler specified.
FUNCTION PARAMETERS: Event
REFERENCES: Chapter 0 and SAP command DISEV()
EXAMPLE: ENEV(EVEO); // enable emergency out handler
NOTE: The released event-handler is not active anymore if the task is terminated or

stopped.

6.6.15 EXP, exponential function

DESCRIPTION: The function returns the value evalue, where e is the base of the natural logarithm
(2.718281...).

DECLARATION: exp(value:double)
RESULT TYPE: Double
NOTE: Function Ln()

6.6.16 JA, jog absolute

DESCRIPTION: The axis channel(s) selected is/are moved absolutely to the position setpoints
specified. For this purpose, the motor is accelerated with the axis-specific
acceleration jac to the velocity jvl and moved to the specified target position Pos. In
addition, you can use the jtl parameter to specify a target velocity. The trajectory
parameters are specified in the axis-specific units.

FUNCTION PARAMETERS: Spec and Pos
SYSTEM PARAMETERS: Qualifier: jac, jvl and jtvl
SIMULTANEOUS FUNCTION: Yes
REFERENCES: PCAP command ja(), SAP command JAW()
NOTE: PCAP command ja()
EXAMPLE: JA(A1:=100.0); // Move Axis 1 absolutely to position 100

JA(A1:=100.0, A2:=100.0);

44 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.17 JAW, jog absolute waiting

DESCRIPTION: This command is identical to the SAP command JA() and PCAP command ja(),
except that the system also waits for the profile end of all axes involved. The use of
this command gives the SAP program a block-like form of the kind found in
commercially available CNC controls.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: Qualifiers: jac, jvl and jtvl
SIMULTANEOUS FUNCTION: Yes
REFERENCES: JA
NOTE: You should use EVENT handlers to ensure that the drive is operated properly even

in exceptional situations, since the CNC program dwells concomitantly long on this
command, particularly when very time-consuming positioning operations are
involved.

EXAMPLE: JAW(A2:=-1000.0); // Move Axis 1 absolutely to Position -1000.0 and
 // wait until the profile end is reached
JAW(A1:=1e3, A2 := 1.3e4);

6.6.18 JHI, jog home index

DESCRIPTION: The reference search run for the zero track (index) of the rotary transducer or the
linear scale for all selected axis channels is started. The search run will be aborted
if the traverse distance or angle specified in Pos is exceeded.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: Qualifiers: hac and hvl
SIMULTANEOUS
FUNCTION:

Yes

REFERENCES: PCAP command jhi(), SAP command JHIW()
EXAMPLE: JHI(A1 := 1.0, A2 := 1.5); // Start reference search run for axes 1 and 2.

6.6.19 JHIW, jog home index waiting

DESCRIPTION: This command is identical to PCAP command jhi() and SAP command JHI(). In
addition, the system waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: hac and hvl
SIMULTANEOUS FUNCTION: Yes
NOTE: SAP command JA()
EXAMPLE: JHIW(A1 := 5.0);

PM / PROGRAMMING AND REFERENCE MANUAL 45

6.6.20 JHL, jog home left

DESCRIPTION: The reference search run on a digital input planned with REF for all selected axis
channels is started towards the left traversing direction.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: hac and hvl
SIMULTANEOUS
FUNCTION:

Yes

REFERENCES: PCAP command jhl(), SAP command JHLW()
EXAMPLE: JHL(A1);

6.6.21 JHLW, jog home left waiting

DESCRIPTION: This command is identical to the PCAP command jhl() and SAP command JHL().
In addition, the system waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: hac and hvl
SIMULTANEOUS FUNCTION: Yes
REFERENCES: PCAP command jhl(), SAP command JHL()
NOTE: SAP command JA()
EXAMPLE: JHLW(A2);

6.6.22 JHR, jog home right

DESCRIPTION: The reference search run on a digital input planned with REF for all selected axis
channels is started towards the right traversing direction.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: hac and hvl
SIMULTANEOUS FUNCTION: Yes
REFERENCES: PCAP command jhr(), SAP command JHRW()
EXAMPLE: JHR(A2);

6.6.23 JHRW, jog home right waiting

DESCRIPTION: This command is identical to the PCAP command jhr() and SAP command JHR().
In addition, the system waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: hac and hvl
SIMULTANEOUS FUNCTION: Yes
NOTE: SAP command JA()
EXAMPLE: JHRW(A1);

6.6.24 JR, jog relative

DESCRIPTION: For description, please consult PCAP command jr().
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: Qualifiers: jac, jvl and jtvl
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: JR(A1 := 100);

46 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.25 JRW, jog relative waiting

DESCRIPTION: This command is identical to the PCAP command jr() and the SAP command JR().
In addition, the system waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: Qualifiers: jac, jvl and jtvl
SIMULTANEOUS FUNCTION: Yes
REFERENCES: JR

6.6.26 JS, jog stop

DESCRIPTION: For description, please consult PCAP command js().
FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: sdec
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: JS(A1);

6.6.27 JSW, jog stop waiting

DESCRIPTION: This command is identical to the PCAP command js() and the SAP command JS().
In addition, the system waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: sdec
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: JSW(A1);

6.6.28 LN, natural logarithm function

DESCRIPTION: The function returns the natural logarithm of value, i.e. the power by which the
constant 2.71828... must be raised to obtain value.

DECLARATION: ln(value:double)
RESULT TYPE: Double
NOTE: Values smaller than/equal to 0.0 for value are not defined mathematically. In this

case the function has no valid return value.
Function Exp()

6.6.29 LPR, latch position registers

DESCRIPTION: Start the data recording of an motion process for one axis (see graphical system
analysis in mcfg).

FUNCTION PARAMETERS: Spec
SYSTEMPARAMETER: PU, TU, LST, LET
SIMULTANEOUS
FUNCTION:

No

EXAMPLE: LPR (A1);

PM / PROGRAMMING AND REFERENCE MANUAL 47

6.6.30 LPRS, latch position registers synchronous

DESCRIPTION: Start the synchronous data recording of an motion process for several axes (see
graphical system analysis in mcfg).

FUNCTION PARAMETERS: Spec
SYSTEMPARAMETER: PU, TU, LST, LET
SIMULTANEOUS
FUNCTION:

Yes

EXAMPLE: LPRS (A1, A2, A3);

6.6.31 MCA, move circular absolute - SMCA, spool motion circular absolute

DESCRIPTION: PCAP command mca(), smca()
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI
EXAMPLE: MCA(A1 := 50.0, A2 := 0.0, PHI := 720.0);

SMCA(A1 := 0.0, A2 := 10.0, PHI := 0.1);

6.6.32 MCAW, move circular absolute waiting

DESCRIPTION: This command is identical to the SAP command MCA(), except that here the
system also waits for the profile end of the two axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI
REFERENCES: PCAP command mca()

6.6.33 MCA3D, move circular absolute three-dimensional
SMCA3D, spool move circular absolute three-dimensional

DESCRIPTION: PCAP command mca3d(), smca3d()
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, PN1, PN2, PN3
EXAMPLE: MCA3D(A1 := 50.0, A2 := 0.0, A3 := 0.0, PN1 = 1.0, PN2 =0. 0, PN3 = 1.0, PHI :=

720.0); // Circle rotated by 45 degrees around A2

6.6.34 MCA3DW, move circular absolute three-dimensional waiting

DESCRIPTION: This command is identical to the SAP command MCA3D(),except that here the
system also waits for the profile end of the two axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, PN1, PN2, PN3
REFERENCES: SAP command mca3d()

48 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.35 MCR3D, move circular relative three-dimensional
SMCR3D, spool move circular relative three-dimensional

DESCRIPTION: PCAP command mcr3d(), smcr3d()
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, PN1, PN2, PN3
EXAMPLE: MCR3D(A1 := 50.0, A2 := 0.0, A3 := 0.0, PN1 = 1.0, PN2 =0. 0, PN3 = 1.0, PHI :=

720.0); // Circle rotated by 45 degrees around A2

6.6.36 MCR3DW, move circular relative three-dimensional waiting

DESCRIPTION: This command is identical to the SAP command MCR3D(),except that here the
system also waits for the profile end of the two axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, PN1, PN2, PN3
REFERENCES: SAP command mcr3d()

6.6.37 MCR, move circular relative - SMCR, spool motion circular relative

DESCRIPTION: PCAP command mcr(), smcr()
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI
EXAMPLE: MCR(A1 := 50.0, A2 := 0.0, PHI := 360.0);

SMCR(A1 := 0.0, A2 := 10.0, PHI := 45.0);

6.6.38 MCRW, move circular relative waiting

DESCRIPTION: This command is identical to the SAP command MCR(), except that here the
system also waits for the profile end of the two axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI

6.6.39 MHA, move helical absolute - SMHA, spool motion helical absolute

DESCRIPTION: PCAP command mha(), smha()
If the circle is to be defined by the target point, the target coordinates are to be
allocated to the axis specifiers and the center point coordinates to the system
parameters DTCA1 and DTCA2. If the circle is specified by the traverse angle, the
center point coordinates are allocated to the axis specifiers of the circle axes.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, (ggf. DTCA1, DTCA2)
EXAMPLE: MHA(A1 := 50.0, A2 := 0.0, PHI := 720.0, A3 := 10);

SMHA(A1 := 0.0, A2 := 10.0, PHI := 0.1, A3 := 10);
// Circle in anticlockwise direction with Radius 10
MHR(A1 := 0.0, A2 := 0.0, PHI := 0.0, A3 := 10, DTCA1 :=-10, DTCA2 := 0);
// Semi-circle in clockwise direction with Radius 10
SMHR(A1 := 20.0, A2 := 0.0, PHI := -1e-100, A3 := 10, DTCA1 := 10, DTCA2 := 0);

PM / PROGRAMMING AND REFERENCE MANUAL 49

6.6.40 MHAW, move helical absolute waiting

DESCRIPTION: This command is identical to the SAP command MHA(), except that here the
system also waits for the profile end of all axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, (ggf. DTCA1, DTCA2)

6.6.41 MHR, move helical relative - SMHR, spool motion helical relative

DESCRIPTION: PCAP command mhr(), smhr()
Here the target point cannot be specified to run the circle.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, (ggf. DTCA1, DTCA2)

6.6.42 MHRW, move helical relative waiting

DESCRIPTION: This command is identical to the SAP command SAP command MHR(), except that
here the system also waits for the profile end of all axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, (if necessary DTCA1, DTCA2)

6.6.43 MLA, move linear absolute - SMLA, spool motion linear absolute

DESCRIPTION: description is provided at the PCAP commands mla() or smla().
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: MLA(A1:=1000.0, A2:=3.2e2);

SMLA(A1:=100.0, A2:=-335.0);

6.6.44 MLAW, move linear absolute waiting

DESCRIPTION: This command is identical to the SAP command MLA(), except that here the
system also waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: MLAW(A1:=-0.3e3, A2:=100.4);

6.6.45 MLR, move linear relative - SMLR, spool motion linear relative

DESCRIPTION: The description is provided at the PCAP commands mlr() or smlr().
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: MLR(A1:=2000.0, A2:=3.2e2);

SMLR(A1:=300.0, A2:=-35.3);

50 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.46 MLRW, move linear relative waiting

DESCRIPTION: This command is identical to the SAP command MLRW(), except that here the
system also waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: MLRW(A1:=-3.45e3, A2:=100.4e-1);

6.6.47 MS, motion stop

DESCRIPTION: The description is provided at the PCAP command ms() [Chapter 4.4.39].
FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: None
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: MS(A1, A2);

6.6.48 MSW, motion stop waiting

DESCRIPTION: This command is identical to the PCAP command ms() and SAP command
MS(),except that here the system also waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: None
SIMULTANEOUS
FUNCTION:

Yes

EXAMPLE: MSW(A1, A2);

6.6.49 OL, open loop

DESCRIPTION: PCAP command ol() [Chapter 4.4.41]
FUNCTION PARAMETERS: Spec
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: OL(A1, A2); // Open position control loop of A1 and A2

6.6.50 POWER

DESCRIPTION: The function returns the value of base to the exponent.
DECLARATION: sqrt(base, exponent : double)
RESULT TYPE: double
NOTE: Function is available from RWMOS.ELF V2.5.3.93
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := 2.0;
d2 := 3.0;
d2 := POWER(d1, d2); // d2 := 8.0

PM / PROGRAMMING AND REFERENCE MANUAL 51

6.6.51 RA, reset axis

DESCRIPTION: PCAP command ra()
FUNCTION PARAMETERS: Spec
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: RA(A1, A2); // Reset axes A1 and A2

6.6.52 RDCBD, read COMMON BUFFER double function

DESCRIPTION: The function returns a floating-point value with double accuracy from the CNC-
task-specific COMMON BUFFER. The offset parameter is a byte offset referenced
to the first element (Element 0) of the COMMON BUFFER.
The double data type occupies 8 bytes in the COMMON BUFFER.
To enable the APCI-800x board CPU system to access this correctly, offset must
always be word-oriented, i.e. have a value which is divisible by 8.

DECLARATION: RDCBD(offset:integer)
RESULT TYPE: double
NOTE: The CNC-task-specific buffer size is 1,000 bytes.

PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: ...
var
 cbd: double;
...
cbd := RDCBD(500); // Read in double variable from offset 500

6.6.53 RDCBI, read COMMON BUFFER integer function

DESCRIPTION: The function returns an integer value from the CNC-task-specific COMMON
BUFFER. The offset parameter is a byte offset referenced to the first element
(Element 0) of the COMMON BUFFER.
The integer data type occupies 4 bytes in the COMMON BUFFER.
To enable the APCI-800x board CPU system to access this correctly, offset must
always be word-oriented, i.e. have a value which is divisible by 4.

DECLARATION: RDCBI(offset:integer)
RESULT TYPE: integer
NOTE: The CNC-task-specific buffer size is 1,000 bytes.

PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx().

EXAMPLE: ...
var
 cbi: integer;
...
cbi := RDCBI(500); // Read in integer variable from offset 500

52 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.54 RDCBS, read COMMON BUFFER single function

DESCRIPTION: The function returns a floating-point value with single accuracy from the CNC-task-
specific COMMON BUFFER. The offset parameter is a byte offset referenced to
the first element (Element 0) of the COMMON BUFFER.
The single data type occupies 4 bytes in the COMMON BUFFER.
To enable the APCI-800x board CPU system to access this correctly, offset must
always be word-oriented, i.e. have a value which is divisible by 4.

DECLARATION: RDCBS(offset:integer)
RESULT TYPE: single
NOTE: The CNC-task-specific buffer size is 1,000 bytes.

PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: ...
var
 cbs: single;
...
cbs := RDCBS(500); // Read in single variable from offset 500

6.6.55 RPTODP, Real-Position to Desired-Position

DESCRIPTION: PCAP command RPtoDP()
NOTE: The relevant axes must not be in a positioning profile, i.e. the profile end flag in the

axis status register must be set.
EXAMPLE: RPTODP (X, Z);

6.6.56 RS, reset system

DESCRIPTION: PCAP command rs()
NOTE: Once this command has been executed, no more monitoring can be performed by

the stand-alone application program, since the CNC task is halted by this
command.

EXAMPLE: RS; // reset complete axis system

6.6.57 SHP, set home position

DESCRIPTION: PCAP command shp()
FUNCTION PARAMETERS: Spec, Pos
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: SHP(A2:=1000.0);

PM / PROGRAMMING AND REFERENCE MANUAL 53

6.6.58 SIN, sine function

DESCRIPTION: The function returns the sine of value. The argument Value is interpreted as an
angle in the unit rad (0..2Pi = 0..360) degrees.

DECLARATION: sin(value:double)
RESULT TYPE: double
NOTE: Cos(), Tan() function
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := 3.1415;
d2 := SIN(d1); // d2 := 0.0 (rounded)

6.6.59 SINH, hyperbolic sine function

DESCRIPTION: The function returns the hyperbolic sine of value.
DECLARATION: Cos(value:double)
RESULT TYPE: double

6.6.60 SQR, square function

DESCRIPTION: This function returns the square of value.
DEKLARATION: sqr(value:double)
RESULT TYPE: double
NOTE: Available only in RWMOS and compiler versions from 05.10.2007
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := 9.0;
d2 := SQR(d1); // d2 := 81.0

6.6.61 SQRT, square root function

DESCRIPTION: The function returns the square root of value.
DECLARATION: sqrt(value:double)
RESULT TYPE: double
NOTE: Negative values of value are not defined mathematically. In this case, the function

does not have a valid return value.
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := 9.0;
d2 := SQRT(d1); // d2 := 3.0

54 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.62 SSF, Spool-Special-Function

DESCRIPTION: This commands allows to enter other commands as traverse commands in the
spooler. The command you want to execute is entered in the system variable
SSFP. The value Value is entered as a parameter in the axis concerned.

FUNCTION PARAMETERS: Spec, Value
SYSTEM PARAMETERS: SSFP
SIMULTANEOUS
FUNCTION:

Yes

COMMANDS: See PCAP-command ssf in chapter 4.4.122

EXAMPLE: SSF(A1:=999, SSFP = 1); // Write CI1 with 999
SSF(A1:=1, A4:=2, SSFP := 1001); // Set O1 at axis 1 and O2 at axis 4
 //
SSF(A1:=0, A2:=0, A3:=0, SSFP:=1000); // Spooler halts at A1, A2 and A3

6.6.63 SSMS, start spooled motions synchronous

DESCRIPTION: Spool commands can be used to transfer commands to the individual axis
channels of the APCI-800x; they are entered in a queue. The SSMS() command
causes a synchronized start for spooler command processing at all the axes
specified in AS.

FUNCTION PARAMETERS: Spec
SIMULTANEOUS FUNCTION: Yes
REFERENCES: PCAP command ssms(), SAP command SSMSW()
EXAMPLE: ...

SMLA(A1:=1000.0, A2:=1000.0); // Spool traversing command
SMLR(A1:=200.0, A2:=500.0); // Spool traversing command
...
SSMS(A1, A2); // Start spooler

6.6.64 SSMSW, start spooled motions synchronous waiting

DESCRIPTION: Synchronized start of all axes selected and wait until all spooled motion profiles of
these axes have been run completely and the profile end of all axes involved has
been reached.

FUNCTION PARAMETERS: Spec
SIMULTANEOUS FUNCTION: Yes
REFERENCES: SAP command SSMS()
NOTE: SPOOL mode
EXAMPLE: ...

SMLR(A1:=1000.0, A2:=1000.0); // Spool traversing command
SMLR(A1:=200.0; A2:=500.0); // Spool traversing command
...
SSMSW(A1, A2); // Start spooler

PM / PROGRAMMING AND REFERENCE MANUAL 55

6.6.65 STARTCNCT, start CNC-Task

DESCRIPTION: This command starts the CNC task transferred in the parameter and executes the
SAP program stored there from its beginning.

FUNCTION PARAMETERS: Integer-constant in range 0..3
NOTE: An SAP program can also start itself automatically from the beginning with this

command.
EXAMPLE: ...

const
 Task1 = 1;
...
STARTCNCT(Task1);

6.6.66 STOP, stop

DESCRIPTION: This command causes the currently running stand-alone application program to
stop. In addition, the corresponding CNC task (Task 0, 1, 2, or 3) is put into idle
state.
The application program can be resumed by means of the contcnct()-PCAP
command, the CONTCNCT()-SAP command or in the TOOLSET program
mcfg.exe.

NOTE: Any EVENT handling procedures enabled will no longer be processed after
execution of the Stop command. The drive should therefore be put into a safe
operating state before this command is executed.

EXAMPLE: STOP; // Stops the SAP program

6.6.67 STEPCNCT, step CNC-Task

DESCRIPTION: This command exectutes a programm line in the indicated CNC task.
FUNCTION PARAMETER: Integer constant in the range 0..3
NOTE: EVENT handling procedures that were possibly released, will not be processed

anymore after executing the program line. Before the execution of the command, a
valid program must be loaded. See also PCAP command stepcnct
(chapter 4.4.125).

EXAMPLE: ...
const
 Task3 = 3;
...

STEPCNCT(Task3);

56 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.68 STOPCNCT, stop CNC-Task

DESCRIPTION: This command halts the CNC task transferred in the parameter and thus halts the
SAP program stored in it as well.

FUNCTION PARAMETERS: Integer constant in the range 0..3
NOTE: Any EVENT handling procedures enabled will no longer be processed by the

correspondingly selected task after executing STOPCNCT().
See also chapter 6.6.66.

EXAMPLE: ...
const
 Task3 = 3;
...

STOPCNCT(Task3);

6.6.69 STOPTOSS

DESCRIPTION: This command transfers the CNC-task, which has been transferred in the
parameter, from the stop-state to the step-state, however without executing a
program line in the indicated task.

FUNCTION PARAMETERS: Integer constant in the range 0..3
NOTE: If the indicated task is not in the stop-mode, the command has no influence. This

command is required especially for the single-step processing by using several
SAP programming tasks.

EXAMPLE: ...
const
 Task3 = 3;
...

STOPTOSS(Task3);

6.6.70 SZPA – Set Zero Position Absolut

DESCRIPTION: Set a virtual zero position. The command is described at the PCAP command szpa
(Chapter 4.4.127). You can use SZPA for stepper motor systems only from the
version 2.5.2.32 of RWMOS.ELF.

FUNCTION PARAMETERS: Spec, Pos
SIMULTANEOUS
FUNCTION:

Yes

REFERENCES: PCAP command szpa(), szpr(), SAP command SZPR
EXAMPLE: SZPA (X := 100, Y := -20);

PM / PROGRAMMING AND REFERENCE MANUAL 57

6.6.71 SZPR – Set Zero Position Relativ

DESCRIPTION: Set the virtual zero position in a relative position. This command described at the
PCAP command szpr (Chapter 4.4.128). You can use SZPR bei
Schrittmotorsystemen for stepper motor systems only from the 2.5.2.32 of
RWMOS.ELF.

FUNCTION PARAMETERS: Spec, Pos
SIMULTANEOUS
FUNCTION:

Yes

REFERENCES: PCAP command szpa(), szpr(), SAP command SZPA
EXAMPLE: SZPR (X := 100, Y := -20);

6.6.72 TAN, tangent function

DESCRIPTION: The function returns the tangent of value. The argument Value is interpreted as an
angle in the unit rad (0..2Pi = 0..360) degrees.

DECLARATION: tan(value:double)
RESULT TYPE: Double
NOTE: Sin(), Cos() function
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := 0.5;
d2 := TAN(d1); // d2 := 0.5463 (rounded)

6.6.73 TANH, hyperbolic tangent function

DESCRIPTION: The function returns the hyperbolic tangent of value.
DECLARATION: tan(value:double)
RESULT TYPE: Double

6.6.74 UF, update filter

DESCRIPTION: PCAP command uf()
FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: kp, ki, kd, kpl, kfca, kfcv
SIMULTANEOUS FUNCTION: Yes
NOTE: For updating the PIDF filter coefficients, all the qualifiers listed above must be

initialized before executing the command.
EXAMPLE: ...

A1.kp := 5.0; // Alter proportional amplification
A1.ki := 0.0;
A1.kd := 0.0;
A1.kpl := 0.0;
A1.kfca := 0.0;
A1.kfcv := 0.0;
UF(A1);
...

58 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.75 UTROVR, update trajectory override

DESCRIPTION: PCAP command utrovr()
FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: TROVR
SIMULTANEOUS
FUNCTION:

Yes

EXAMPLE: ...
TROVR := 0.9; // Trajectory velocity override = -10%
UTROVR(A1, A2); // Reduced trajectory velocity for axes A1 and A2
...

6.6.76 WRCBI, write COMMON BUFFER integer procedure

DESCRIPTION: The procedure describes a memory location of the integer type with the value of
value in the CNC-task-specific COMMON BUFFER. The offset parameter is a byte
offset referenced to the first element (Element 0) of the COMMON BUFFER.
The integer data type occupies 4 bytes in the COMMON BUFFER.
To enable the APCI-800x board CPU system to access this correctly, offset must
always be word-oriented, i.e. have a value which is divisible by 4.

DECLARATION: WRCBI(offset:integer; value:integer)
NOTE: The CNC-task-specific buffer size is 1,000 bytes.

PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: WRCBI(500, -1000); // Write integer variable from offset 500
 // with value -1000

6.6.77 WRCBS, write COMMON BUFFER single procedure

DESCRIPTION: The procedure describes a memory location of the single type (floating-point
number with single accuracy) with the value of value in the CNC-task-specific
COMMON BUFFER. The offset parameter is a byte offset referenced to the first
element (Element 0) of the COMMON BUFFER.
The single data type occupies 4 bytes in the COMMON BUFFER.
To enable the APCI-800x board CPU system to access this correctly, offset must
always be word-oriented, i.e. have a value which is divisible by 4.

DECLARATION: WRCBS(offset:integer; value:single)
NOTE: The CNC-task-specific buffer size is 1,000 bytes.

PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx().

EXAMPLE: WRCBS(500, 3.99); // Write single variable from offset 500
 // with value 3.99

PM / PROGRAMMING AND REFERENCE MANUAL 59

6.6.78 WRCBD, write COMMON BUFFER double procedure

DESCRIPTION: The procedure describes a memory location of the "double" type (floating-point
number with double accuracy) with the value of value in the CNC-task-specific
COMMON BUFFER. The offset parameter is a byte offset referenced to the first
element (Element 0) of the COMMON BUFFER.

The double data type occupies 8 bytes in the COMMON BUFFER.
To enable the APCI-800x board CPU system to access this correctly, offset must
always be word-oriented, i.e. have a value which is divisible by 8.

DECLARATION: WRCBD(offset:integer; value:double)
NOTE: The CNC-task-specific buffer size is 1,000 bytes.

PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: WRCBD(500, 100.2e-128); // Write double variable from offset 500
 // with value 100.2e-128

6.6.79 WRITE

DESCRIPTION: Adding a partial string to the current task specific string output.
FUNCTION PARAMETER: Diverse
NOTES: The function can be called with an undefined number of parameters, which can be

of the type string constant, integer, double or boolean. String constants are
strings that are limited in rw_SymPas by superior commas and in the G-Code
proramming by inverted commas. The single parameters are separated by
commas. Numeric or boolean parameters can be also expressions.
 The call of this function sets Bit 0 in the system variable tskinfo.
Information about the state of the string output see Chapter 4.4.13. The reading of
the task specific output string is done with the PCAP function gettskstr(), see
chapter 4.4.14.

EXAMPLE RW_SYMPAS: write (ۥThis is a string: ۥ, CI0);
write (ۥIstposition: ۥ, A1.rp);

EXAMPLE G-CODES: N0100 write “This a string“, CI0

59 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.80 WRITELN

DESCRIPTION: Adding a partial string to the current task specific string output and concluding the
output string.

FUNCTION PARAMETER: Diverse
NOTE: The function can be called with an undefined number of parameters, which can be

of the type string constant, integer, double or boolean. String constants are strings
that are limited in rw_SymPas by superior commas and in the G-Code proramming
by inverted commas. The single parameters are separated by commas. Numeric or
boolean parameters can be also expressions. If after this command write or writeln
is called again, the previous output string will be overwritten.
The call of this function sets Bit 1 in the system variable tskinfo.
For information about the state of the string output, see chapter 4.4.13.
The reading of the task specific output string is done with the PCAP function
gettskstr(), see chapter 4.4.14. If Bit 26 is set in the MODEREG register
(chapter 6.3.1.5), the respective CNC task will be stopped by this command.

EXAMPLE RW_SYMPAS: writeln (ۥThis is a string: ۥ, CI0);
writeln (ۥIstposition: ۥ, A1.rp);

EXAMPLE G-CODES: N0100 writeln “This is a string“, CI0

6.6.81 WT, wait timer

DESCRIPTION: Wait for the wait time transferred as a parameter before continuing the SAP
program again. This command de-activates the CNC task and therefore does not
need any CPU time. To reduce the workload on the master CPU system, this
command may be used in queues, etc.

FUNCTION PARAMETERS: Integer values with a unit of 64 µs
NOTE: The EVENT handling procedures are not processed while this command is being

executed. But if you want these to be monitored, this can, for example, be achieved
by means of several WT() calls with shorter wait times (perhaps in a loop).

EXAMPLE: ...
CONST sec = 15625;
...
WT(5*sec); // Wait 5s
...

PM / PROGRAMMING AND REFERENCE MANUAL 59

6.7 Compiler commands
As the name implies, a compiler command instructs the compiler, while it is compiling a source text, to
execute (or not to execute) certain operations. In rw_SymPas, a compiler command is activated as follows:

Inside the SAP source text program, a special syntax is formulated inside a comment: The opening bracket
({) is followed directly by a dollar sign ($) and the name of the command, which consists of one or more
letters. These "comments" can (apart from a few exceptions) appear at any position in the source text at
which a normal comment would also be permissible.

6.7.1 Include file

DESCRIPTION: This compiler command instructs the compiler to read in the file designated by
filename. Basically, the compiler behaves as if the text read is in place of the {$I}
command. rw_SymPas permits include files to be nested up to 15 levels. A file
inserted by means of {$I} can thus itself insert further files, which in turn contain {$I}
commands.
Note: If in the mcfg.exe NCC editor environment an include file has already been
opened in one of the three editor windows, the SAP source text of this editor will be
incorporated and not the content of the file concerned.

SYNTAX: {$I Filename }

6.7.2 Task selection

DESCRIPTION: You can use this compiler command to specify the task (TaskNr, values 0..3) in
which the SAP program involved is to be run. The information is stored in the
autocode file "filename.cnc". The PCAP command txbf() is used to transfer this file
automatically into the right task.

SYNTAX: {$TASK TaskNr}
NOTE: If the SAP program concerned does not contain this statement, the task number

currently selected will be utilized for compiling. But if the ($TASK) command is
given, the correspondingly selected task number also becomes the default task
number for all subsequent display, start and stop commands.
Chapter 3.2.1

EXAMPLE: ...
const
 Task1 = 1;
...

{$TASK Task1}; // or
{$TASK 1}

6.7.3 Full system compiling

DESCRIPTION: The command selects the compiler option FULLSYSTEM.
SYNTAX: {$FULLSYSTEM}
NOTE: If the SAP program concerned does not contain this statement, the option currently

selected will be utilized for compiling.
This statement is to be entered at the beginning of the source text file.
This command is available for mcfg from the version V2.5.2.13 and for ncc from the
version V2.5.2.9.

59 PM / PROGRAMMING AND REFERENCE MANUAL

6.8 SAP runtime errors
When operating stand-alone programs, different errors may occur. In this case, the corresponding task is
stopped. An error number and the number of the line where the error occurred are then entered in the data
structure CNCTS (see chapter 4.3.2.10). The error numbers and possible causes of error are listed below.

Table 40: SAP runtime errors

Error # Description
1 / 0001 The arithmetic operation is not correct for the used data type
2 / 0002 Incorrect data type
4 / 0004 Incorrect internal operation code. This can be caused by a compatibility problem

between mcfg/ncc and RWMOS.ELF.
8 / 0008 Stack overflow. Program too big or internal problem for the RWMOS operating

system software
16 / 0010 Stack underflow. This error can be an internal problem for the RWMOS operating

system software.
32 / 0020 Unknown event handler. It can be be caused by a compatibility problem between

mcfg/ncc and RWMOS.ELF.
64 / 0040 Incorrect NC command. This can be caused by a compatibility problem between

mcfg/ncc and RWMOS.ELF.
128 / 0080 Address injury in NC program. This error can be caused by an internal problem

by the RWMOS operating systemsoftware.
256 / 0100 Address injury in NC program through wrong parameter settings
512 / 0200 Error when using the AT interface

1024 / 0400 A common variable has been addressed outside the correct range.
2048 / 0800 Incorrect index in case of double access to the common buffer (cannot be divided

by 8).
4096 / 1000 Incorrect SAP command. This error can be caused by a compatibility problem

with controllers of another generation.
8192 / 2000 Error in cutting speed interpolation

16384 /
4000

Use of non-permitted axes in interpolation with G-codes

32768 /
8000

Invalid parameter in arithmetic operation, e.g. mod 0

10000 hex Too many SSF commands in one spline line (a maximum of 8 are possible)
20000 hex Recursion depth exceeded in G-code subroutines with program repeat

(O-parameter)

	5 The rw_SymPas programming language for stand-alone application programming
	5.1 Introduction
	5.2 Lexical grammar
	5.2.1 White space
	5.2.2 Comments
	5.2.3 Symbols
	5.2.3.1 Keywords
	5.2.3.2 Designators
	5.2.3.2.1 Name and length restrictions
	5.2.3.2.2 Designator upper and lower case
	5.2.3.2.3 Unambiguity and validity of designators

	5.2.3.3 Standard designators
	5.2.3.4 Axis designators
	5.2.3.5 Qualified designators
	5.2.3.6 Labels
	5.2.3.7 Constants
	5.2.3.7.1 Integer constants
	5.2.3.7.1.1 Decimal constants
	5.2.3.7.1.2 Hexadecimal constants

	5.2.3.7.2 Floating-point constants
	5.2.3.7.2.1 The type of floating-point constants
	5.2.3.7.2.2 Declaration of constants

	5.2.3.7.3 Punctuation characters
	5.2.3.7.3.1 Parentheses
	5.2.3.7.3.2 Comma
	5.2.3.7.3.3 Semi-colon
	5.2.3.7.3.4 Equals sign

	5.3 Semantic grammar
	5.3.1 Declarations
	5.3.1.1 Objects
	5.3.1.2 Types
	5.3.1.2.1 Boolean type
	5.3.1.2.2 Integer type
	5.3.1.2.3 Floating-point types (real types)
	5.3.1.2.4 Assignment compatibility of types

	5.3.1.3 Variables
	5.3.1.3.1 Automatic type conversion

	5.3.2 Blocks, locality and range of application
	5.3.2.1 Syntax
	5.3.2.1.1 Declaration section
	5.3.2.1.1.1 Label declaration section
	5.3.2.1.1.2 Constant declaration section
	5.3.2.1.1.3 Variable declaration section
	5.3.2.1.1.4

	5.3.2.1.2 Command section

	5.3.2.2 Range of application
	5.3.2.2.1 Redeclaration in a subordinate block
	5.3.2.2.2 The location of a declaration in a block
	5.3.2.2.3 Redeclarations inside a block
	5.3.2.2.4 Standard designators

	5.3.3 Variables
	5.3.3.1 The declaration of variables
	5.3.3.1.1 Axis-type declaration
	5.3.3.1.2 Timer declaration

	5.3.3.2 Conversion of variable types

	5.3.4 Expressions
	5.3.4.1 Syntax of expressions
	5.3.4.2 Operators
	5.3.4.3 Arithmetical operators
	5.3.4.4 Logic operators
	5.3.4.5 Boolean operators
	5.3.4.6 Relational operators

	5.3.5 Statements
	5.3.5.1 Assignments
	5.3.5.2 Procedure or function calls
	5.3.5.3 The goto statement
	5.3.5.4 Structured instructions
	5.3.5.5 Compound statements
	5.3.5.6 Conditional statements
	5.3.5.6.1 The if statement

	5.3.5.7 Loops
	5.3.5.7.1 The while statement
	5.3.5.7.2 The repeat statement
	5.3.5.7.3 The for statement

	5.3.6 Procedures and functions
	5.3.6.1 Procedure declarations
	5.3.6.2 Function declarations

	5.3.7 The syntax of an rw_SymPas program
	5.3.7.1 The program descriptor
	5.3.7.2 The program block

	6 Stand-alone application programming
	6.1 Introduction
	6.2 rw_SymPas example programs
	6.3 Abbreviations, system parameters, axis specifiers and axis qualifiers
	6.3.1 System parameters
	6.3.1.1 PC interrupt generation
	6.3.1.2 System parameters for unit processing
	6.3.1.3 ERRORREG
	6.3.1.4 ControllerFlags
	6.3.1.5 MODEREG

	6.3.2 Axis specifiers
	6.3.3 Axis qualifiers
	6.3.4 Structured axis qualifiers
	6.3.5 Abbreviations

	6.4 Reserved procedure names with event function
	6.4.1 Event procedure EVEO
	6.4.2 Event procedure EVDNR
	6.4.3 Event procedure EVLSH
	6.4.4 Event procedure EVLSS
	6.4.5 Event procedure EVMPE
	6.4.6 Event procedure EVUI
	6.4.7 Priority and processing sequence for the event procedures

	6.5 SAP block commands
	6.6 rw_SymPas SAP command reference list
	6.6.1 Structure of the reference list
	6.6.2 ABORT, abort
	6.6.3 ABS, absolute function
	6.6.4 ACOS, arc cosine function
	6.6.5 ASIN, arc sine function
	6.6.6 ATAN, arc tangent function
	6.6.7 AZO, activate zero offsets
	6.6.8 CL, close loop
	6.6.9 CLV
	6.6.10 CONTCNCT, continue CNC-Task
	6.6.11 COS, cosine function
	6.6.12 COSH, hyperbolic cosine function
	6.6.13 DISEV, disable event
	6.6.14 ENEV, enable event
	6.6.15 EXP, exponential function
	6.6.16 JA, jog absolute
	6.6.17 JAW, jog absolute waiting
	6.6.18 JHI, jog home index
	6.6.19 JHIW, jog home index waiting
	6.6.20 JHL, jog home left
	6.6.21 JHLW, jog home left waiting
	6.6.22 JHR, jog home right
	6.6.23 JHRW, jog home right waiting
	6.6.24 JR, jog relative
	6.6.25 JRW, jog relative waiting
	6.6.26 JS, jog stop
	6.6.27 JSW, jog stop waiting
	6.6.28 LN, natural logarithm function
	6.6.29 LPR, latch position registers
	6.6.30 LPRS, latch position registers synchronous
	6.6.31 MCA, move circular absolute - SMCA, spool motion circular absolute
	6.6.32 MCAW, move circular absolute waiting
	6.6.33 MCA3D, move circular absolute three-dimensional SMCA3D, spool move circular absolute three-dimensional
	6.6.34 MCA3DW, move circular absolute three-dimensional waiting
	6.6.35 MCR3D, move circular relative three-dimensional SMCR3D, spool move circular relative three-dimensional
	6.6.36 MCR3DW, move circular relative three-dimensional waiting
	6.6.37 MCR, move circular relative - SMCR, spool motion circular relative
	6.6.38 MCRW, move circular relative waiting
	6.6.39 MHA, move helical absolute - SMHA, spool motion helical absolute
	6.6.40 MHAW, move helical absolute waiting
	6.6.41 MHR, move helical relative - SMHR, spool motion helical relative
	6.6.42 MHRW, move helical relative waiting
	6.6.43 MLA, move linear absolute - SMLA, spool motion linear absolute
	6.6.44 MLAW, move linear absolute waiting
	6.6.45 MLR, move linear relative - SMLR, spool motion linear relative
	6.6.46 MLRW, move linear relative waiting
	6.6.47 MS, motion stop
	6.6.48 MSW, motion stop waiting
	6.6.49 OL, open loop
	6.6.50 POWER
	6.6.51 RA, reset axis
	6.6.52 RDCBD, read COMMON BUFFER double function
	6.6.53 RDCBI, read COMMON BUFFER integer function
	6.6.54 RDCBS, read COMMON BUFFER single function
	6.6.55 RPTODP, Real-Position to Desired-Position
	6.6.56 RS, reset system
	6.6.57 SHP, set home position
	6.6.58 SIN, sine function
	6.6.59 SINH, hyperbolic sine function
	6.6.60 SQR, square function
	6.6.61 SQRT, square root function
	6.6.62 SSF, Spool-Special-Function
	6.6.63 SSMS, start spooled motions synchronous
	6.6.64 SSMSW, start spooled motions synchronous waiting
	6.6.65 STARTCNCT, start CNC-Task
	6.6.66 STOP, stop
	6.6.67 STEPCNCT, step CNC-Task
	6.6.68 STOPCNCT, stop CNC-Task
	6.6.69 STOPTOSS
	6.6.70 SZPA – Set Zero Position Absolut
	6.6.71 SZPR – Set Zero Position Relativ
	6.6.72 TAN, tangent function
	6.6.73 TANH, hyperbolic tangent function
	6.6.74 UF, update filter
	6.6.75 UTROVR, update trajectory override
	6.6.76 WRCBI, write COMMON BUFFER integer procedure
	6.6.77 WRCBS, write COMMON BUFFER single procedure
	6.6.78 WRCBD, write COMMON BUFFER double procedure
	6.6.79 WRITE
	6.6.78 WRCBD, write COMMON BUFFER double procedure
	6.6.79 WRITE
	6.6.78 WRCBD, write COMMON BUFFER double procedure
	6.6.79 WRITE
	6.6.78 WRCBD, write COMMON BUFFER double procedure
	6.6.79 WRITE

